如圖,已知雙曲線x2-y2=1的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點分別為P1(x1,y1),P2(x2,y2)。
(1)求k的取值范圍,并求x2-x1的最小值;
(2)記直線P1A1的斜率為k1,直線P2A2的斜率為k2,那么,k1·k2是定值嗎?證明你的結(jié)論。
解:(1)∵l與圓相切

∴m2=1+k2
得(1-k2)x2-2mkx-(m2+1)=0

∴k2<1,
∴-1<k<1
故k的取值范圍為(-1,1)
由于
所以
∵0≤k2<1
∴當k2=0時,x2-x1取最小值。
(2)由已知可得A1,A2的坐標分別為(-1,0),(1,0)





由(1)得m2-k2=1
為定值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(b>a>0)且a∈[1,2],它的左、右焦點為F1,F(xiàn)2,左右頂點分別為A、B.過F2作圓x2+y2=a2的切線,切點為T,交雙曲線與P、Q兩點.
(Ⅰ)求證直線PQ與雙曲線的一條漸近線垂直.
(Ⅱ)若M為PF2的中點,O為坐標原點,|OM|-|MT|=1,|PQ|=λ|AB|,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知雙曲線x2-
y2
3
=1
,A,C分別是虛軸的上、下頂點,B是左頂點,F(xiàn)為左焦點,直線AB與FC相交于點D,則∠BDF的余弦值是( 。
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷解析版) 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“

(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;

(3)求證:圓x2+y2=內(nèi)的點都不是“C1﹣C2型點”

 

查看答案和解析>>

同步練習(xí)冊答案