已知點(diǎn)A(4,4)在拋物線y2=px(p>0)上,該拋物線的焦點(diǎn)為F,過(guò)點(diǎn)A作直線l:的垂線,垂足為M,則∠MAF的平分線所在直線的方程為   
【答案】分析:先求出拋物線方程,再拋物線的定義可得|AF|=|AM|,所以∠MAF的平分線所在直線就是線段MF的垂直平分線,從而可得結(jié)論.
解答:解:∵點(diǎn)A(4,4)在拋物線y2=px(p>0)上,∴16=4p,∴p=4
∴拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線方程為x=-1,M(-1,4)
由拋物線的定義可得|AF|=|AM|,所以∠MAF的平分線所在直線就是線段MF的垂直平分線
=-2,
∴∠MAF的平分線所在直線的方程為y-4=(x-4),即x-2y+4=0
故答案為:x-2y+4=0
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(4,4)在拋物線y2=px(p>0)上,該拋物線的焦點(diǎn)為F,過(guò)點(diǎn)A作直線l:x=-
p4
的垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P到準(zhǔn)線的距離為d,且點(diǎn)P在y軸上的射影是M,點(diǎn)A(
7
2
,4),則|PA|+|PM|的最小值是
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)A(4,4)在拋物線y2=px(p>0)上,該拋物線的焦點(diǎn)為F,過(guò)點(diǎn)A作直線l:數(shù)學(xué)公式的垂線,垂足為M,則∠MAF的平分線所在直線的方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)A(4,4)在拋物線y2=px(p>0)上,該拋物線的焦點(diǎn)為F,過(guò)點(diǎn)A作直線l:x=-
p
4
的垂線,垂足為M,則∠MAF的平分線所在直線的方程為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案