已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.
分析:(1)設雙曲線C的漸近線方程為y=kx,根據(jù)題意可得k=±1,所以雙曲線C的方程為
x2
a2
-
y2
a2
=1
,C的一個焦點與A關于直線y=x對稱,可得雙曲線的焦點坐標進而求出雙曲線的標準方程.
(2)若Q在雙曲線的右支上,則延長QF2到T,使|QT|=|OF1|;若Q在雙曲線的左支上,則在QF2上取一點T,使|QT|=|QF1|,根據(jù)雙曲線的定義|TF2|=2,再利用相關點代入法求出軌跡方程即可.
解答:解:(1)設雙曲線C的漸近線方程為y=kx,即kx-y=0
∵該直線與圓 x2+(y-
2
)2=1
相切,
∴雙曲線C的兩條漸近線方程為y=±x…(3分)
故設雙曲線C的方程為
x2
a2
-
y2
a2
=1
,又∵雙曲線C的一個焦點為(
2
,0)

∴2a2=2,a2=1,∴雙曲線C的方程為x2-y2=1…(6分)
(2)若Q在雙曲線的右支上,則延長QF2到T,使|QT|=|OF1|
若Q在雙曲線的左支上,則在QF2上取一點T,使|QT|=|QF1|…(8分)
根據(jù)雙曲線的定義|TF2|=2,所以點T在以F2(
2
,0)
為圓心,2為半徑的圓上,即點T的軌跡方程是(x-
2
)2+y2=4(x≠0)
①…(10分)
由于點N是線段F1T的中點,設N(x,y),T(xT,yT
x=
xT-
2
2
y=
yT
2
,,即
xT=2x+
2
yT=2y
…(12分)
代入①并整理得點N的軌跡方程為 x2+y2=1,(x≠
2
2
)
…(14分)
點評:本題主要考查雙曲線的有關性質(zhì)與定義,以及求軌跡方程的方法(如相關點代入法).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)已知拋物線y2=2px(p>0)的焦點F與雙曲
x2
4
-
y2
5
=1
的右焦點重合,拋物線的準線與x軸的交點為K,點A在拋物線上且|AK|=
2
|AF|
,則A點的橫坐標為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準線L的左側(cè)能作出直線m:x=a,使點R在直線m上的射影S滿足,當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A (0,)為圓心,1為半徑的圓相切,又知C的一個焦點與A關于y = x對稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點,F1,F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;

    (3)設直線y = mx + 1與雙曲線C的左支交于AB兩點,另一直線l經(jīng)過M (–2,0)及AB的中點,求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省濰坊市高三3月第一次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題

已知拋物線的焦點F與雙曲的右焦點重合,拋物線的準線與x軸的交點為K,點A在拋物線上且,則A點的橫坐標為

A.            B.3                C.            D.4

 

查看答案和解析>>

同步練習冊答案