已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱(chēng).
(1)求雙曲線C的方程;
(2)若Q是雙曲線線C上的任一點(diǎn),F1,F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;
(3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過(guò)M (–2,0)及AB的中點(diǎn),求直線l在y軸上的截距b的取值范圍.
x2 – y2 = 1 ,x2 + y2 = 1 (x≠),(–∞,– 2 –)∪(2,+∞)
解:設(shè)雙曲線C的漸近線為y = kx,即kx – y = 0.
∵漸近線與x2 + (y – )2 = 1相切,∴,∴雙曲線C的漸近線為y = ±x,∴設(shè)雙曲線方程為x2 – y2 = a2.∵A (0,)關(guān)于y = x的對(duì)稱(chēng)點(diǎn)為(,0),∴由題意知,雙曲線的一個(gè)焦點(diǎn)為(,0),
∴C = .∴2a2 = 2,a2 = 1,∴雙曲線C的方程為x2 – y2 = 1.
(2)若Q在雙曲線的右支上,則延長(zhǎng)QF2到T,使|QT| = |QF1|;若Q在雙曲線的左支上,則在QF2上取一點(diǎn)T,使|QT| = |QF1|.根據(jù)雙曲線的定義,|TF2| = 2.∴T在以F2 (,0)為圓心,2為半徑的圓上,∴點(diǎn)T的軌跡方程是(x –)2 + y2 = 4 (x≠0) ①
易知,點(diǎn)N是線段F1T的中點(diǎn).
設(shè)N (x,y),T (x0,y0),則代入①得,N點(diǎn)的軌跡方程為
x2 + y2 = 1 (x≠)
(3)由得 (1 – m2) x2 – 2mx – 2 = 0,依題意有
∵AB中點(diǎn)為,∴l的方程為y = .
令x = 0得 b =
∵m∈(1,) ∴–2(m – )2 + ∈(–2 + ,1)
∴b的范圍是(–∞,– 2 –)∪(2,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
4 |
y2 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
4 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過(guò)雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濰坊市高三3月第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知拋物線的焦點(diǎn)F與雙曲的右焦點(diǎn)重合,拋物線的準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)A在拋物線上且,則A點(diǎn)的橫坐標(biāo)為
A. B.3 C. D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com