8.已知函數(shù)f(x)=x2+f′(2)(lnx-x),則f′(4)=6.

分析 f′(2)是一個常數(shù),對函數(shù)f(x)求導(dǎo),能直接求出f′(2)的值,再求出f′(4)

解答 解:∵f(x)=x2+f′(2)(lnx-x),
∴f′(x)=2x+f′(2)($\frac{1}{x}$-1),
∴f′(2)=4+f′(2)($\frac{1}{2}$-1),
解得f′(2)=$\frac{8}{3}$,
∴f′(4)=8+$\frac{8}{3}$($\frac{1}{4}$-1)=8-2=6,
故答案為:6.

點評 本題考查了求導(dǎo)法則,解題時應(yīng)知f′(2)是一個常數(shù),根據(jù)求導(dǎo)法則進行計算即可,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知sinα-2cosα=0.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列{an}滿足(a1+a2)+(a2+a3)+…(an+an+1)=2n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}{a}_{n+1}}{2}$,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$\overrightarrow{m}$,$\overrightarrow{n}$為單位向量,其夾角為60°,則|2$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.排一張有5個歌唱節(jié)目和4個舞蹈節(jié)目的演出節(jié)目單,要求:
(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?
(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,在銳角△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,P是線段BN(不含端點)上的一點,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則$\frac{1}{m}$+$\frac{3}{n}$的最小值為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某賓館有客房200間,每間客房租金200元/天,天天客滿,該賓館提高服務(wù)質(zhì)量后對房租實行上調(diào),如果租金增加20元/天,客房出租將減少10間,若不考慮其他因素,賓館將房間租金提高到多少時,1天的租金收入最高,最高為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列幾組對象可以構(gòu)成集合的是(  )
A.充分接近π的實數(shù)的全體B.善良的人
C.A校高一(1)班所有聰明的學生D.B單位所有身高在1.75 cm以上的人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)正數(shù)數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有的正整數(shù)n,都有$\sqrt{t{S_n}}=\frac{{t+{a_n}}}{2}$,則Sn=tn2

查看答案和解析>>

同步練習冊答案