函數(shù)y=x+2cosx在[0,
π
2
]上取得最大值時,X的值為( 。
A.0B.
π
6
C.
π
3
D.
π
2
y′=1-2sinx=0  x∈[0,
π
2
]
解得:x=
π
6

當(dāng)x∈(0,
π
6
)時,y′>0,∴函數(shù)在(0,
π
6
)上單調(diào)遞增
當(dāng)x∈(
π
6
,
π
2
)時,y′<0,∴函數(shù)在(0,
π
6
)上單調(diào)遞減,
∴函數(shù)y=x+2cosx在[0,
π
2
]上取得最大值時x=
π
6

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州一模)已知函數(shù)f(x)=2cos(2x+
π
6
)
,下面四個結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=sin(
1
2
x+
π
6
)
的最小正周期與單調(diào)遞增區(qū)間;
(2)求函數(shù)y=1-2cos(2x+
π
4
)
的最大值,及取最大值時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對函數(shù)y=f(x)(x1≤x≤x2),設(shè)點A(x1,y1)、B(x2,y2)是圖象上的兩端點.O為坐標(biāo)原點,且點N
O
N=λ
O
A+(1-λ)
O
B滿足.點M(x,y)在函數(shù)y=f(x)的圖象上,且x=λx1+(1-λ)x2(λ為實數(shù)),則稱|MN|的最大值為函數(shù)的“高度”,則函數(shù)f(x)=2cos(2x-
π
4
)
在區(qū)間[
π
8
,
8
]
上的“高度”為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)f(x)=2cos(x+
π
3
)
的圖象向左平移m個單位,所得圖象關(guān)于y軸對稱,則正實數(shù)m的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(2x-
π
6
)
,下面四個結(jié)論中正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案