對函數(shù)y=f(x)(x1≤x≤x2),設(shè)點(diǎn)A(x1,y1)、B(x2,y2)是圖象上的兩端點(diǎn).O為坐標(biāo)原點(diǎn),且點(diǎn)N
O
N=λ
O
A+(1-λ)
O
B滿足.點(diǎn)M(x,y)在函數(shù)y=f(x)的圖象上,且x=λx1+(1-λ)x2(λ為實(shí)數(shù)),則稱|MN|的最大值為函數(shù)的“高度”,則函數(shù)f(x)=2cos(2x-
π
4
)
在區(qū)間[
π
8
,
8
]
上的“高度”為
4
4
分析:
ON
OA
+(1-λ)
OB
結(jié)合向量的基本定理可知A、N、B三點(diǎn)共線,結(jié)合x=λx1+(1-λ)x2,可知M,N的橫坐標(biāo)相同
結(jié)合余弦函數(shù)的性質(zhì),此時|MN|最大,可求
解答:解:∵
ON
OA
+(1-λ)
OB

=λ(
OA
-
OB
)+
OA
=λ
AB
+
OA

ON
-
OA
AB
AN
AB

∴A、N、B三點(diǎn)共線
又x=λx1+(1-λ)x2
∴M,N的橫坐標(biāo)相同
∴當(dāng)M在函數(shù)圖象的最低點(diǎn)時,此時|MN|最大,值為4
故答案為:4
點(diǎn)評:本題以新定義為載體,主要考查了向量的基本定理的應(yīng)用及余弦函數(shù)的性質(zhì),屬于知識的簡單綜合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對函數(shù)y=f(x)=4sin(2x+
π
3
)(x∈R)有下列命題:
①函數(shù)y=f(x)的表達(dá)式可改寫為y=4cos(2x-
π
6

②函數(shù)y=f(x)是以2π為最小正周期的周期函數(shù)
③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對稱
④函數(shù)y=f(x)的圖象關(guān)于直線x=-
π
6
對稱
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對函數(shù)y=f(x)(x1≤x≤x2),設(shè)點(diǎn)A(x1,y1)、B(x2,y2)是圖象上的兩端點(diǎn),O為坐標(biāo)原點(diǎn),且點(diǎn)N滿足
ON
=λ
OA
+(1-λ)
OB
,λ≥0,點(diǎn)M(x,y)在函數(shù)y=f(x)的圖象上,且x=λx1+(1-λ)x2,則稱|MN|的最大值為函數(shù)的“高度”,則函數(shù)f(x)=x2-2x-1在區(qū)間[-1,3]上的“高度”為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們給出如下定義:對函數(shù)y=f(x),x∈D,若存在常數(shù)C(C∈R),對任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,則稱函數(shù)f(x)為“和諧函數(shù)”,稱常數(shù)C為函數(shù)f(x)的“和諧數(shù)”.
(1)判斷函數(shù)f(x)=x+1,x∈[-1,3]是否為“和諧函數(shù)”?答:
 
.(填“是”或“否”)如果是,寫出它的一個“和諧數(shù)”:
 
.(4分)
(2)證明:函數(shù)g(x)=lgx,x∈[10,100]為“和諧函數(shù)”,
3
2
是其“和諧數(shù)”;
(3)判斷函數(shù)u(x)=x2,x∈R是否為和諧函數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對函數(shù)y=f(x)定義域內(nèi)的每一個值x1,都存在唯一的值x2,使得f(x1)f(x2)=1成立,則稱此函數(shù)為“黃金函數(shù)”,給出下列三個命題:
①y=x-2是“黃金函數(shù)”;
②y=lnx是“黃金函數(shù)”;
③y=2x是“黃金函數(shù)”,
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
2
)+1,x∈R
,則對函數(shù)y=f(x)描述正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案