【題目】在正方體中,點平面,點是線段的中點,若,則當(dāng)的面積取得最小值時,

A.B.C.D.

【答案】D

【解析】

根據(jù)分析出點在直線上,當(dāng)的面積取得最小值時,線段的長度為點到直線的距離,即可求得面積關(guān)系.

先證明一個結(jié)論P:若平面外的一條直線l在該平面內(nèi)的射影垂直于面內(nèi)的直線m,則lm

即:已知直線l在平面內(nèi)的射影為直線OA,OAOB,求證:lOB.

證明:直線l在平面內(nèi)的射影為直線OA,

不妨在直線l上取點P,使得PAOBOAOB,OAPA是平面PAO內(nèi)兩條相交直線,

所以OB⊥平面PAO,平面PAO

所以POOB,即lOB.以上這就叫做三垂線定理.

如圖所示,取的中點,

正方體中:,在平面內(nèi)的射影為,

由三垂線定理可得:,

在平面內(nèi)的射影為

由三垂線定理可得:,是平面內(nèi)兩條相交直線,

所以平面

∴當(dāng)點在直線上時,,

設(shè),則

當(dāng)的面積取最小值時,

線段的長度為點到直線的距離,

∴線段長度的最小值為,

.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的零點;

2)若不存在相異實數(shù)、,使得成立.求實數(shù)的取值范圍;

3)若對任意實數(shù),總存在實數(shù)、,使得成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,的中點.

1)求異面直線所成角的余弦值;

2)求AE和平面的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】退休年齡延遲是平均預(yù)期壽命延長和人口老齡化背景下的一種趨勢.某機(jī)構(gòu)為了了解某城市市民的年齡構(gòu)成,從該城市市民中隨機(jī)抽取年齡段在[2080]內(nèi)的600人進(jìn)行調(diào)查,并按年齡層次繪制頻率分布直方圖,如圖所示.若規(guī)定年齡分布在[6080]內(nèi)的人為“老年人”,將上述人口分布的頻率視為該城市年齡段在[2080]的人口分布的概率.從該城市年齡段在[20,80]內(nèi)的市民中隨機(jī)抽取3人,記抽到“老年人”的人數(shù)為則隨機(jī)變量的數(shù)學(xué)期望為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng),的單調(diào)區(qū)間和極值

(2)若直線是曲線的切線,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若處的切線方程為,求實數(shù)、的值;

2)設(shè)函數(shù)(其中為自然對數(shù)的底數(shù)).

①當(dāng)時,求的最大值;

②若是單調(diào)遞減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球,兩個“”號球,三個“”號球、四個無號球,箱內(nèi)有五個“”號球,五個“”號球,每次摸獎后放回,每位顧客消費額滿元有一次箱內(nèi)摸獎機(jī)會,消費額滿元有一次箱內(nèi)摸獎機(jī)會,摸得有數(shù)字的球則中獎,“”號球獎元,“”號球獎元,“”號球獎元,摸得無號球則沒有獎金。

(1)經(jīng)統(tǒng)計,顧客消費額服從正態(tài)分布,某天有位顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù).(結(jié)果四舍五入取整數(shù))

附:若,則.

(2)某三位顧客各有一次箱內(nèi)摸獎機(jī)會,求其中中獎人數(shù)的分布列.

(3)某顧客消費額為元,有兩種摸獎方法,

方法一:三次箱內(nèi)摸獎機(jī)會;

方法二:一次箱內(nèi)摸獎機(jī)會.

請問:這位顧客選哪一種方法所得獎金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最值;

(2)函數(shù)圖像在點處的切線斜率為有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程

(2)過點作直線的垂線交曲線兩點(軸上方),求的值.

查看答案和解析>>

同步練習(xí)冊答案