【題目】如圖,在四棱錐中,,,為的中點(diǎn),是線段上的一點(diǎn).
(1)若為的中點(diǎn),求證:平面平面;
(2)當(dāng)點(diǎn)在什么位置時(shí),平面.
【答案】(1)證明見解析;(2)為靠近點(diǎn)的三等分點(diǎn).
【解析】
(1)連接、,由中位線的性質(zhì)得出,可得出平面,證明四邊形為平行四邊形,可得出,進(jìn)而得出平面,再利用面面平行的判定定理可證明出平面平面;
(2)連接、,設(shè),利用相似三角形得出,由平面結(jié)合線面平行的性質(zhì)得出,再利用平行線分線段成比例定理可確定點(diǎn)的位置.
(1)如下圖所示,連接、,
因?yàn)?/span>、分別為、的中點(diǎn),所以,
平面,平面,所以,平面,
又因?yàn)?/span>,為的中點(diǎn),所以,
又,所以四邊形是平行四邊形,,
平面,平面,平面,
又因?yàn)?/span>平面,平面,,
所以平面平面;
(2)連接、,設(shè),連接,
因?yàn)?/span>平面,平面,平面平面,
,所以.
在梯形中,,,
又,所以,所以,,
所以為線段上靠近點(diǎn)的三等分點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知且.
(1)求角;
(2)如圖,D為△ABC外一點(diǎn),若在平面四邊形ABCD中,,求△ACD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,正方形的邊長為2,,設(shè)為側(cè)棱的中點(diǎn).
(1)求正四棱錐的體積;
(2)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中,為個(gè)互不相同的有限集合,滿足對(duì)任意、,均有.若(表示有限集合的元素個(gè)數(shù)),證明:存在,使得屬于中的至少個(gè)集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、為平面上的兩個(gè)定點(diǎn),且,該平面上的動(dòng)線段的端點(diǎn)、,滿足,,,則動(dòng)線段所形成圖形的面積為( )
A.36B.60C.72D.108
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asin2x﹣2cos2x+1(a∈R)的圖象經(jīng)過點(diǎn)(﹣,1)
(1)求a;
(2)若在區(qū)間[0,m]上存在唯一實(shí)數(shù)x0,使得f(x0)=2,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣axlnx.
(1)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(2)證明:對(duì)于a∈(0,e),函數(shù)f(x)在區(qū)間()上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個(gè)正方體中,有下列四個(gè)命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動(dòng)力和煤、電耗如下表:
產(chǎn)品品種 | 勞動(dòng)力 | 煤噸 | 電千瓦 |
A產(chǎn)品 | 3 | 9 | 4 |
B產(chǎn)品 | 10 | 4 | 5 |
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動(dòng)力300個(gè),煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)A、B兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com