已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線右支一的任意一點(diǎn),若
|PF1|2
|PF2|
的最小值為8a,則雙曲線離心率的取值范圍是( 。
A.(0,+∞)B.(1,2]C.(1,
3
]
D.(1,3]
∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線右支一的任意一點(diǎn)
∴|PF1|-|PF2|=2a,|PF1|=2a+|PF2|,
|PF1|2
|PF2|
=
(2a+|PF2|)2
|PF2|
=
4a2
|PF2|
+4a+|PF2|≥8a
,
當(dāng)且僅當(dāng)
4a2
|PF2|
=|PF2|
,即|PF2|=2a時(shí)取得等號(hào)
∴|PF1|=2a+|PF2|=4a
∵|PF1|-|PF2|=2a<2c,|PF1|+|PF2|=6a≥2c,
∴e∈(1,3]
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn).P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為左準(zhǔn)線上一點(diǎn),O為坐標(biāo)原點(diǎn).已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當(dāng)λ=1時(shí),經(jīng)過(guò)焦點(diǎn)F且平行于OP的直線交雙曲線于A、B點(diǎn),若|AB|=12,求此時(shí)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以橢圓
x2
16
+
y2
9
=1
短軸的兩個(gè)頂點(diǎn)為焦點(diǎn),且過(guò)點(diǎn)A(4,-5)的雙曲線的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線
x2
a2
-
y2
b2
=1
的右焦點(diǎn)到右準(zhǔn)線的距離等于焦距的
1
3
,則離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線C:x2-
y2
4
=1
,P為C上任意一點(diǎn);
(1)求證:點(diǎn)P到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù);
(2)設(shè)點(diǎn)A(4,0),求|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別F1、F2,O為雙曲線的中心,P是雙曲線右支上異于頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,且⊙I與x軸相切于點(diǎn)A,過(guò)F2作直線PI的垂線,垂足為B,若e為雙曲線的離心率,下面八個(gè)命題:
①△PF1F2的內(nèi)切圓的圓心在直線x=b上;
②△PF1F2的內(nèi)切圓的圓心在直線x=a上;
③△PF1F2的內(nèi)切圓的圓心在直線OP上;
④△PF1F2的內(nèi)切圓必通過(guò)點(diǎn)(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|與|OB|關(guān)系不確定.
其中正確的命題的代號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

F1、F2是雙曲線
x2
4
-
y2
3
=1
的兩個(gè)焦點(diǎn),過(guò)點(diǎn)F2作x軸的垂線交雙曲線于A、B兩點(diǎn),則△F1AB的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為2,則雙曲線的兩條漸近線所成的銳角是(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線
x2
9
-
y2
m
=1
的漸近線方程為y=±
5
3
x
,則雙曲線焦點(diǎn)F到漸近線的距離為 ______.

查看答案和解析>>

同步練習(xí)冊(cè)答案