直線l:(m+1)x+2y-4m-4=0(m∈R)恒過定點(diǎn)C,圓C是以點(diǎn)C為圓心,以4為半徑的圓.

(1)求圓C的方程;

(2)設(shè)圓M的方程為(x-4-7cos)2+(y-7sin)2=1,過圓M上任意一點(diǎn)P分別作圓C的兩條切線PE、PF,切點(diǎn)為E、F,求的最大值和最小值.

答案:
解析:

  (1),

  (2)設(shè)

  

  在,

  由圓的幾何性質(zhì)得

  

  ,由此可得

  的最大值為-最小值為-8


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省莘縣實(shí)驗(yàn)高中2011-2012學(xué)年高一下學(xué)期第一次月考數(shù)學(xué)試題 題型:022

圓C:(x-1)2+(y-2)2=25,被直線l:(2m+1)x+(m+1)y-7m-4=0截得的弦長最短時m的值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(mR).

(1)證明不論m取什么實(shí)數(shù),直線l與圓恒交于兩點(diǎn);

(2)求直線被圓C截得的弦長最小時l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修二4.2直線、圓的位置關(guān)系練習(xí)卷(一) 題型:解答題

已知圓C:(x-1) +(y-2) =25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R)

(1)證明:無論m取什么實(shí)數(shù),L與圓恒交于兩點(diǎn).

(2)求直線被圓C截得的弦長最小時L的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆吉林省長春市高一上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)證明:直線l與圓相交;

(2)求直線l被圓截得的弦長最小時的直線l的方程.

 

查看答案和解析>>

同步練習(xí)冊答案