19.sin65°cos20°-sin20°cos65°的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 利用和差公式即可得出.

解答 解:sin65°cos20°-sin20°cos65°=sin(65°-20°)=sin45°=$\frac{\sqrt{2}}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了三角函數(shù)和差公式、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。  
A.12πB.4$\sqrt{3}π$C.12$\sqrt{3}π$D.$\frac{4}{3}$$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={1,2,3,4},B={2,4,5},則A∩B=( 。
A.{2}B.{2,4}C.{2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一輛卡車寬2.7米,要經(jīng)過一個(gè)半徑為4.5米的半圓形隧道,該隧道為雙向車道,中間有隔離帶,則這輛卡車的平頂車篷篷頂距離地面的高度不得超過( 。
A.1.4米B.3.0米C.3.6米D.4.5米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(n)滿足f(n)=$\left\{\begin{array}{l}{2(n=1)}\\{3f(n-1)(n≥2)}\end{array}\right.$,則f(3)=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足(x-3)2+y2=3,則$\frac{y}{x-1}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將點(diǎn)p(-2,2)變換為p′(-4,1)的伸縮變換公式為( 。
A.$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=2y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=2y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{2}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C1:$\frac{x^2}{a^2}$+$\frac{y^2}{3}$=1(a>$\sqrt{3}$)的離心率為$\frac{1}{2}$,拋物線C2:y2=2px(p>0)的焦點(diǎn)F是橢圓C1的右焦點(diǎn).
(1)求拋物線C2的方程;
(2)過點(diǎn)F且傾斜角為$\frac{π}{3}$的直線l與拋物線C2相交于A,B兩點(diǎn),當(dāng)動(dòng)點(diǎn)D在直線x=-2上移動(dòng)時(shí),試求△ABD周長c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-ln(x+k)(k>0).
(1)若f(x)的最小值為0,求k的值;
(2)當(dāng)f(x)的最小值為0時(shí),若對(duì)?x∈[0,+∞),有f(x)≤ax2恒成立,求實(shí)數(shù)a的最小值;
(3)當(dāng)(2)成立時(shí),證明:$\sum_{i=2}^n$f($\frac{2}{2i-1}$)<$\frac{2n-2}{2n-1}}$(n≥2,n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案