如圖,D、E在線段BC上,且BD=EC,

求證:

 

【答案】

可先證

【解析】試題分析:,∵,

又∵BD=EC∴

考點(diǎn):平面向量的加減運(yùn)算法則

點(diǎn)評(píng):解決本題的關(guān)鍵是把轉(zhuǎn)化為來(lái)證。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
2
,∠CDA=45°,求四棱錐P-ABCD的體積.
(Ⅲ)在滿足(Ⅱ)的條件下求二面角B-PC-D的余弦值的絕對(duì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•青島一模)如圖所示,b、c在平面α內(nèi),a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,E在線段AB上(C,D,E均異于A,B),則△CDE是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州一模)如圖,在底面為菱形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=4
3
,BD=2,AC=4,點(diǎn)E在線段PC上.
(Ⅰ)當(dāng)點(diǎn)E為線段PC的中點(diǎn)時(shí),求證:BE⊥AC;
(Ⅱ)若二面角B-EA-D為直二面角,求直線BE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點(diǎn),E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
(1)求證:AF⊥平面CDEF;
(2)求三棱錐C-ADE的體積;
(3)求二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在圖1至圖3中,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn)。四邊形BCGF和CDHN都是正方形,AE的中點(diǎn)是M。

(1)如圖1,點(diǎn)E在AC的延長(zhǎng)線上,點(diǎn)N與點(diǎn)G重合時(shí),點(diǎn)M與點(diǎn)C重合,求證:FM = MH,F(xiàn)M⊥MH;

(2)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖2,求證:△FMH是等腰直角三角形;

(3)將圖2中的CE縮短到圖3的情況,△FMH還是等腰直角三角形嗎?(直接寫(xiě)出結(jié)論,不必證明)。

查看答案和解析>>

同步練習(xí)冊(cè)答案