如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.

(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

(1)見解析   (2)

解析(1)證明:連接DE,交BC于點(diǎn)G.

由弦切角定理得,
∠ABE=∠BCE.
而∠ABE=∠CBE,
故∠CBE=∠BCE,BE=CE.
又DB⊥BE,
所以DE為直徑,
則∠DCE=90°,
由勾股定理可得DB=DC.
(2)解:由(1)知,∠CDE=∠BDE,DB=DC,
故DG是BC的中垂線,
所以BG=.
設(shè)DE的中點(diǎn)為O,連接BO,
則∠BOG=60°.
從而∠ABE=∠BCE=∠CBE=30°,
所以CF⊥BF,
故Rt△BCF外接圓的半徑等于.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F.

(1)判斷BE是否平分∠ABC,并說明理由;
(2)若AE=6,BE=8,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:是⊙的直徑,是弧的中點(diǎn),,垂足為于點(diǎn).

(1)求證:=;
(2)若=4,⊙的半徑為6,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過AD延長(zhǎng)線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.

求證:(1);(2)EF//CB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的直徑, 是⊙的切線,的延長(zhǎng)線交于點(diǎn),為切點(diǎn).若,,的平分線和⊙分別交于點(diǎn)、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB是☉O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)E,F為BA延長(zhǎng)線上一點(diǎn),且BD·BE=BA·BF,求證:

(1)EF⊥FB;
(2)∠DFB+∠DBC=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是⊙O的直徑,BE為⊙O的切線,點(diǎn)C為⊙O上不同于A,B的一點(diǎn),AD為∠BAC的平分線,且分別與BC交于H,與⊙O交于D,與BE交于E,連接BD,CD.
 
(1)求證:BD平分∠CBE
(2)求證:AH·BHAE·HC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB∥CD,OD2=OB·OE.

求證:AD∥CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.

(1)證明:△ABE∽△ADC;
(2)若△ABC的面積SAD·AE,求∠BAC的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案