(本小題滿分14分)已知橢圓C:的焦距為4,其長軸長和短軸長之比為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的右焦點(diǎn),T為直線上縱坐標(biāo)不為0的任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(。┤鬙T平分線段PQ(其中O為坐標(biāo)原點(diǎn)),求的值;
(ⅱ)在(。┑臈l件下,當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
(Ⅰ);(Ⅱ)(。;(ⅱ)當(dāng)最小時(shí),T點(diǎn)的坐標(biāo)是(3,1)或(3,-1).
【解析】
試題分析:(Ⅰ)利用條件“焦距為4,其長軸長和短軸長之比為”列方程求出的值從而確定橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)(。┯桑á瘢┛傻,F(xiàn)點(diǎn)的坐標(biāo)是(2,0). 設(shè)直線PQ的方程為x=my+2,將直線PQ的方程與橢圓C的方程聯(lián)立,得消去得到關(guān)于的一元二次方程,于是可利用韋達(dá)定理與兩直線的位置關(guān)系確定的值.(ⅱ)由(。┲猅為直線上任意一點(diǎn)可得,點(diǎn)T點(diǎn)的坐標(biāo)為.利用兩點(diǎn)間的距離公式將表示成的函數(shù),最后利用函數(shù)或不等式的方法求出其取得最小值時(shí)的值,從而確定T點(diǎn)的縱坐標(biāo)..
試題解析:【解析】
(Ⅰ)由已知可得解得a2=6,b2=2.
所以橢圓C的標(biāo)準(zhǔn)方程是. (4分)
(Ⅱ)(。┯桑á瘢┛傻,F(xiàn)點(diǎn)的坐標(biāo)是(2,0).
設(shè)直線PQ的方程為x=my+2,將直線PQ的方程與橢圓C的方程聯(lián)立,得
消去x,得(m2+3)y2+4my-2=0,其判別式Δ=16m2+8(m2+3)>0.
設(shè)P(x1,y1),Q(x2,y2),則y1+y2=,y1y2=.于是x1+x2=m(y1+y2)+4=.
設(shè)M為PQ的中點(diǎn),則M點(diǎn)的坐標(biāo)為.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015040806074939634181/SYS201504080608080690665310_DA/SYS201504080608080690665310_DA.019.png">,所以直線FT的斜率為,其方程為.
當(dāng)時(shí),,所以點(diǎn)的坐標(biāo)為,
此時(shí)直線OT的斜率為,其方程為.
將M點(diǎn)的坐標(biāo)為代入,得.
解得. (8分)
(ⅱ)由(。┲猅為直線上任意一點(diǎn)可得,點(diǎn)T點(diǎn)的坐標(biāo)為.
于是,
.
所以
.
當(dāng)且僅當(dāng)m2+1=,即m=±1時(shí),等號(hào)成立,此時(shí)取得最小值.
故當(dāng)最小時(shí),T點(diǎn)的坐標(biāo)是(3,1)或(3,-1). (14分)
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與橢圓的位置關(guān)系綜合問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北省高一12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知點(diǎn)P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是( )
A.90° B.60° C.45° D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市高三教學(xué)質(zhì)量統(tǒng)一檢測一理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知某地區(qū)中小學(xué)生人數(shù)和近視情況如下表所示:
年級(jí) | 人數(shù) | 近視率 |
小學(xué) | 3500 | 10% |
初中 | 4500 | 30% |
高中 | 2000 | 50% |
為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生進(jìn)行調(diào)查,
則:(Ⅰ)樣本容量為___________;(Ⅱ)抽取的高中生中,近視人數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
根據(jù)如下樣本數(shù)據(jù)
x | 3 | 4 | 5 | 6 | 7 |
y | 4.0 | 2.5 | 0.5 | 0.5 | 2.0 |
得到的回歸方程為.若,則的值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知曲線的參數(shù)方程是(為參數(shù),a為實(shí)數(shù)常數(shù)),曲線的參數(shù)方程是(為參數(shù),b為實(shí)數(shù)常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是. 若與分曲線所成長度相等的四段弧,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)在上的投影為,則的最大值是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
若函數(shù)在處取得極值,則實(shí)數(shù)的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省高一上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=ax,(a>0且a≠1),對于任意x,y∈R,下列算式中:
①f(x+y)=f(x)·f(y);
②f(xy)=f(x)+f(y);
③f(x-y)= ;
④;
⑤, 其中不正確的是__ .(填上所有不正確的題號(hào))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com