設a∈R,討論定義在(-∞,0)的函數(shù)的單調(diào)性.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在R上有定義,對任何實數(shù)a>0和任何實數(shù)x,都有f(ax)=af(x)
(Ⅰ)證明f(0)=0;
(Ⅱ)證明f(x)=
kxx≥0
hxx<0
其中k和h均為常數(shù);
(Ⅲ)當(Ⅱ)中的k>0時,設g(x)=
1
f(x)
+f(x)(x>0),討論g(x)在(0,+∞)內(nèi)的單調(diào)性并求極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域為[
1
a
,1]
,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax1+2x
是奇函數(shù).
(1)求b的取值范圍;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,討論定義在(-∞,0)的函數(shù)f(x)=ax3+(a+)x2+(a+1)x的單調(diào)性.

查看答案和解析>>

同步練習冊答案