【題目】1927年德國漢堡大學(xué)的學(xué)生考拉茲提出一個(gè)猜想:對于每一個(gè)正整數(shù),如果它是奇數(shù),就把它乘以3再加1,如果它是偶數(shù),就把它除以2,這樣循環(huán),最終結(jié)果都能得到1.如圖是為了驗(yàn)證考拉茲猜想而設(shè)計(jì)的一個(gè)程序框圖,則①處應(yīng)填寫的條件及輸出的結(jié)果i分別為(

A.a是偶數(shù)?;5B.a是偶數(shù)?;6

C.a是奇數(shù)?;5D.a是奇數(shù)?;6

【答案】D

【解析】

根據(jù)“是”對應(yīng)“乘以3再加1”,根據(jù)“否”對應(yīng)“除以2”,即可確定①處應(yīng)填寫的條件;再執(zhí)行循環(huán)確定輸出結(jié)果.

因?yàn)棰偬帯笆恰睂?yīng)“乘以3再加1”,根據(jù)“否”對應(yīng)“除以2”,而是奇數(shù),就把它乘以3再加1,是偶數(shù),就把它除以2,所以①處應(yīng)填寫的條件為a是奇數(shù)?

執(zhí)行循環(huán),依次得到:,結(jié)束循環(huán),輸出

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)=x3x滿足:對于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是(  )

A. [-, ]

B. [-, ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Ox2+y28內(nèi)有一點(diǎn)P(﹣1,2),AB為過點(diǎn)P且傾斜角為α的弦,

1)當(dāng)α135°時(shí),求AB的長;

2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得,則實(shí)數(shù)的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場比賽得分用莖葉圖表示,莖葉圖中甲得分的部分?jǐn)?shù)據(jù)被墨跡污損不清(如圖1),但甲得分的折線圖完好(如圖2),則下列結(jié)論錯(cuò)誤的是(

A.乙運(yùn)動(dòng)員得分的中位數(shù)是17,甲運(yùn)動(dòng)員得分的極差是19

B.甲運(yùn)動(dòng)員發(fā)揮的穩(wěn)定性比乙運(yùn)動(dòng)員發(fā)揮的穩(wěn)定性差

C.甲運(yùn)動(dòng)員得分有的葉集中在莖1

D.甲運(yùn)動(dòng)員得分的平均值一定比乙運(yùn)動(dòng)員得分的平均值低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交拋物線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),

(Ⅰ)求拋物線的方程;

(Ⅱ)若直線,且和拋物線有且只有一個(gè)公共點(diǎn),試問直線為拋物線上異于原點(diǎn)的任意一點(diǎn))是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,在圓E上,過點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案