【題目】關(guān)于x方程 ﹣x=lnx有唯一的解,則實數(shù)a的取值范圍是 .
【答案】{a|a<0或a=1}
【解析】解:要使方程有意義,則x>0,
設(shè)f(x)= ﹣x,g(x)=lnx,
若a<0,此時函數(shù)f(x)在x>0時,單調(diào)遞減,g(x)=lnx單調(diào)遞增,
此時兩個函數(shù)只有一個交點,滿足方程有唯一解;
若a>0,要使方程 ﹣x=lnx有唯一的解,
則函數(shù)f(x)與g(x)有相同的切線,
設(shè)切點為(m,n),
則f′(x)= ,g′(x)= ,
則滿足 ﹣1= ,
即 ﹣m=1①,
同時 ﹣m=lnm,②
①﹣2×②得m=1﹣2lnm,
即m﹣1=﹣2lnm,
∵y=m﹣1與y=﹣2lnm只有一個根,
∴解得m=1,
當m=1時,n=ln1=0,
即切點為(1,0),
則f(x)與g(x)在(1,0)處相切,
即此時f(1)=0,即a=1,滿足條件.
所以答案是:{a|a<0或a=1}
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= cos( ﹣2x)的單調(diào)遞增區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ)(k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ+ ,kπ+π](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣(a+1)lnx﹣ ,其中a∈R.
(Ⅰ)求證:當a=1時,函數(shù)y=f(x)沒有極值點;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α是三角形的內(nèi)角,且sinα+cosα= .
(1)求cos2α的值;
(2)把 用tanα表示出來,并求其值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an},a1=1,an=an+12+2an+1(Ⅰ)求證:數(shù)列{log2(an+1)}為等比數(shù)列:
(Ⅱ)設(shè)bn=n1og2(an+1),數(shù)列{bn}的前n項和為Sn , 求證:1≤Sn<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意 恒成立,求實數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com