【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.

【答案】
(1)證明:∵PC⊥平面ABC,AB平面ABC,

∴PC⊥AB.

∵CD⊥平面PAB,AB平面PAB,

∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB


(2)解:取AP的中點(diǎn)O,連接CO、DO.

∵PC=AC=2,∴C0⊥PA,CO= ,

∵CD⊥平面PAB,由三垂線定理的逆定理,得DO⊥PA.

∴∠COD為二面角C﹣PA﹣B的平面角.

由(1)AB⊥平面PCB,∴AB⊥BC,

又∵AB=BC,AC=2,求得BC=

PB= ,CD=

cos∠COD=


【解析】(1)要證AB⊥平面PCB,只需證明直線AB垂直平面PCB內(nèi)的兩條相交直線PC、CD即可;(2)取AP的中點(diǎn)O,連接CO、DO;說明∠COD為二面角C﹣PA﹣B的平面角,然后解三角形求二面角C﹣PA﹣B的大小的余弦值.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,函數(shù) 的定義域?yàn)榧螦,函數(shù)y=log2(x+2)的定義域?yàn)榧螧,則集合(CUA)∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求證f(x)是R上的單調(diào)增函數(shù);
(2)求函數(shù)f(x)的值域;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= +lnx,則(
A.x=2為f(x)的極大值點(diǎn)??
B.x=2為f(x)的極小值點(diǎn)
C.x= 為f(x)的極大值點(diǎn)??
D.x= 為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)f(x)在R上單調(diào)遞增,當(dāng)x∈[0,3]時(shí),值域?yàn)閇1,4].
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣1,8]時(shí),求函數(shù) 的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的上頂點(diǎn)為P(0,1),過E的焦點(diǎn)且垂直長軸的弦長為1.若有一菱形ABCD的頂點(diǎn)A、C在橢圓E上,該菱形對角線BD所在直線的斜率為﹣1.
(1)求橢圓E的方程;
(2)當(dāng)直線BD過點(diǎn)(1,0)時(shí),求直線AC的方程;
(3)當(dāng)∠ABC= 時(shí),求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點(diǎn)處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=xf(x)+4x的單調(diào)遞增區(qū)間及極值.
(3)求函數(shù)g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2+x(a∈R).
(1)若函數(shù)f(x)在x=1處的切線平行于x軸,求實(shí)數(shù)a的值,并求此時(shí)函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

同步練習(xí)冊答案