【題目】已知函數(shù),其中,給出四個結(jié)論:
①函數(shù)是最小正周期為的奇函數(shù);
②函數(shù)的圖像的一條對稱軸是;
③函數(shù)圖像的一個對稱中心是;
④函數(shù)的遞增區(qū)間為.則正確結(jié)論的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】解答:
∵
=cos2xcossin2xsincos2x=cos2xsin2xcos2x=sin2xcos2x=sin(2x+)
∴T=π,即函數(shù)f(x)的最小正周期為π,
但f(0)=sin=≠0,函數(shù)f(x)不是奇函數(shù)。命題①錯誤;
∵f()=sin(2×+)=sin=1,
∴函數(shù)f(x)圖象的一條對稱軸是x=.命題②正確;
∵f()=sin(2×+)=sinπ=0,
∴函數(shù)f(x)圖象的一個對稱中心為(,0).命題③正確;
由+2kπ2x++2kπ,得:
+kπx+kπ,k∈Z.
∴函數(shù)f(x)的遞增區(qū)間為[kπ+,kπ+],k∈Z.命題④正確。
∴正確結(jié)論的個數(shù)是3個。
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴。某汽車經(jīng)銷商推出三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計分析,得到如下的柱狀圖。已知從三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率。
(Ⅰ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤不大于2萬元的概率;
(Ⅱ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤的平均值;
(Ⅲ)根據(jù)某稅收規(guī)定,該汽車經(jīng)銷商每月(按30天計)上交稅收的標(biāo)準(zhǔn)如下表:
若該經(jīng)銷商按上述分期付款方式每天平均銷售此品牌汽車3輛,估計其月純收入(純收入=總利潤-上交稅款)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調(diào)研了名女性或名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.
(1)完成下列 列聯(lián)表:
喜歡旅游 | 不喜歡旅游 | 估計 | |
女性 | |||
男性 | |||
合計 |
(2)能否在犯錯誤概率不超過的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.
附:
參考公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中在校學(xué)生2 000人,高一年級與高二年級人數(shù)相同并且都比高三年級多1人.為了響應(yīng)市教育局“陽光體育”號召,該校開展了跑步和跳繩兩項比賽,要求每人都參加而且只參加其中一項,各年級參與項目人數(shù)情況如下表:
年級 項目 | 高一年級 | 高二年級 | 高三年級 |
跑步 | a | b | c |
跳繩 | x | y | z |
其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對本次活動的滿意度,采用分層抽樣從中抽取一個200人的樣本進(jìn)行調(diào)查,則高二年級中參與跑步的同學(xué)應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計,得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計 | |
男 | 40 | ||
女 | 5 | ||
總計 | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個女同學(xué)中,3個是大學(xué)三年級同學(xué),2個是大學(xué)四年級同學(xué).現(xiàn)從這5個同學(xué)中隨機選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個同學(xué)是同年級的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點, 和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為的中點,AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點,直線與交與, ,求, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)是否存在實數(shù)使函數(shù)是奇函數(shù)?并說明理由;
(2)在(1)的條件下,當(dāng)時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com