(本小題滿(mǎn)分13分)

設(shè)函數(shù)

(I)若當(dāng)時(shí),取得極值,求的值,并討論的單調(diào)性;

(II)若存在極值,求的取值范圍,并證明所有極值之和大于

 

【答案】

(I)分別在區(qū)間單調(diào)增加,在區(qū)間單調(diào)減少.

(II)當(dāng)時(shí),,當(dāng)時(shí),,所以無(wú)極值.

,,也無(wú)極值.

的極值之和為

【解析】解:(Ⅰ),

依題意有,故.從而

的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052309471067184721/SYS201205230949303281318914_DA.files/image016.png">,當(dāng)時(shí),

當(dāng)時(shí),;   當(dāng)時(shí),

從而,分別在區(qū)間單調(diào)增加,在區(qū)間單調(diào)減少.

(Ⅱ)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052309471067184721/SYS201205230949303281318914_DA.files/image021.png">,

方程的判別式

(。┤,即,在的定義域內(nèi),故的極值.

(ⅱ)若,則

,

當(dāng)時(shí),,當(dāng)時(shí),,所以無(wú)極值.

,,也無(wú)極值.

(ⅲ)若,即,則有兩個(gè)不同的實(shí)根,

當(dāng)時(shí),,從而的定義域內(nèi)沒(méi)有零點(diǎn),故無(wú)極值.

當(dāng)時(shí),,,的定義域內(nèi)有兩個(gè)不同的零點(diǎn),由根值判別方法知取得極值.

綜上,存在極值時(shí),的取值范圍為

的極值之和為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線(xiàn)所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案