橢圓方程為的一個(gè)頂點(diǎn)為A(0,2),離心率

(1)求橢圓的方程;

(2)直線l:y=kx-2(k≠0)與橢圓相交于不同的兩點(diǎn)M,N滿足,求k.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,A為橢圓短軸的一個(gè)頂點(diǎn),且△AF1F2是直角三角形,橢圓上任一點(diǎn)P到左焦點(diǎn)F1的距離的最大值為
2
+1

(1)求橢圓C的方程;
(2)與兩坐標(biāo)軸都不垂直的直線l:y=kx+m(m>0)交橢圓C于E,F(xiàn)兩點(diǎn),且以線段EF為直徑的圓恒過(guò)坐標(biāo)原點(diǎn),當(dāng)△OEF面積的最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,橢圓短軸的一個(gè)頂點(diǎn) B 與兩焦點(diǎn) F1、F2組成的三角形的周長(zhǎng)為 4+2
3
且∠F1BF2=
3
,則橢圓的方程是
x2
4
+y2=1
x2+
y2
4
=1
x2
4
+y2=1
x2+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長(zhǎng)是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)

橢圓方程為的一個(gè)頂點(diǎn)為,離心率

(1)求橢圓的方程;

(2)直線與橢圓相交于不同的兩點(diǎn)滿足,求。

查看答案和解析>>

同步練習(xí)冊(cè)答案