若焦點在x軸上的橢圓的離心率為,則n=(    )
A.B.C.D.
B

試題分析:
點評:由橢圓方程找到
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓的左右頂點,在長軸上隨機任取點,過作垂直于軸的直線交橢圓于點,則使的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點(2,1),平行于直線軸上的截距為,設直線交橢圓于兩個不同點、,

(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一動點P到兩焦點距離之和為(    )
A.10B.8C.6D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知、是橢圓的左、右焦點,弦,則的周長為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是方程x=0的兩個實根,那么過點)的直線與橢圓的位置關系是
A.相交B.相切C.相交或相切D.相離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一點到焦點的距離為2,的中點,則等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且MD=PD.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)離心率為的橢圓的左、右焦點分別為、,是坐標原點.
(1)求橢圓的方程;
(2)若直線交于相異兩點,且,求.(其中是坐標原點)

查看答案和解析>>

同步練習冊答案