已知數(shù)列{an}是公差為2的等差數(shù)列,它的前n項和為Sn,且a1+1,a3+1,a7+1成等比數(shù)列.
(1)求{an}的通項公式;
(2)記數(shù)列{
1
Sn
}的前n項和為Tn求證:Tn
3
4
分析:(1)由a1+1,a3+1,a7+1成等比數(shù)列,結(jié)合等差數(shù)列及等比數(shù)列的性質(zhì)可(a1+5)2=(a1+1)(a1+13),解方程求a1,進而可求通項
(2)由(1)可求sn,進而可求
1
sn
,然后利用裂項相消法求解數(shù)列的和即可證明
解答:解:(1)數(shù)列{an}是公差為2的等差數(shù)列,
∴a3=a1+5,a7=a1+13
∵a1+1,a3+1,a7+1成成等比數(shù)列,
(a1+5)2=(a1+1)(a1+13)      …(3分)
解之得a1=3,
所以an=2n+1…(6分)
(2)證明:由(1)得an=2n+1,sn=n(n+2)
1
sn
=
1
2
(
1
n
-
1
n+2
)
,…(9分)
∴Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
3
4
…(13分)
點評:本題主要考查了等差數(shù)列與等比數(shù)列的性質(zhì)的簡單應用,數(shù)列的裂項求和方法的應用在證明不等式中的應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項與它后一項的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項和Sn的計算公式為:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

按照等差數(shù)列的定義我們可以定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個數(shù)列,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么這個數(shù)列的前21項和S21的值為
52
52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項起,如果每一項與它的前一項的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項公式(不要求證明).

查看答案和解析>>

同步練習冊答案