【題目】已知分別是橢圓的左、右焦點(diǎn),離心率為, 分別是橢圓的上、下頂點(diǎn), .

(1)求橢圓的方程;

(2)若直線與橢圓交于相異兩點(diǎn),且滿足直線的斜率之積為,證明:直線恒過(guò)定點(diǎn),并采定點(diǎn)的坐標(biāo).

【答案】(1)(2)直線恒過(guò)定點(diǎn).

【解析】試題分析:(1)設(shè)出相關(guān)點(diǎn)坐標(biāo),利用和離心率為得到幾何元素間的關(guān)系即可求解;(2)聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、斜率公式得到等式,進(jìn)而利用直線方程判定其過(guò)定點(diǎn).

試題解析:(1)由題知,,,∴,.

,得 ② 又

由①②③聯(lián)立解得:

∴橢圓的方程為.

(2)證明:由橢圓的方程得上頂點(diǎn),

設(shè),,由題意知,

得:

,

,

,

即:

,

化簡(jiǎn)得:

解得:,結(jié)合

即直線恒過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中, 平面,點(diǎn)是線段的中點(diǎn).

(1)如果,求證:平面平面;

(2)如果,求直線和平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.

(1)求f(x)的解析式,并畫(huà)出f(x)的圖象;

(2)設(shè)g(x)=f(x)-k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時(shí),函數(shù)g(x)有一個(gè)零點(diǎn)?二個(gè)零點(diǎn)?三個(gè)零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=12,直線l:4x+3y=25,設(shè)點(diǎn)A是圓C上任意一點(diǎn),求點(diǎn)A到直線l的距離小于2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過(guò)正常生活,有公共衛(wèi)生專(zhuān)家建議的指標(biāo)是連續(xù)7天每天新增感染人數(shù)不超過(guò)5,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列① ~ ⑤各個(gè)選項(xiàng)中,一定符合上述指標(biāo)的是 ( )

平均數(shù)標(biāo)準(zhǔn)差; 平均數(shù)且標(biāo)準(zhǔn)差;

平均數(shù)且極差小于或等于2;眾數(shù)等于1且極差小于或等于4

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直線l:3x-y-1=0上求點(diǎn)P和Q,使得

(1)點(diǎn)P到點(diǎn)A(4,1)和B(0,4)的距離之差最大;

(2)點(diǎn)Q到點(diǎn)A(4,1)和C(3,4)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)Sn=(﹣1)n ,若存在正整數(shù)n,使得(an1﹣p)(an﹣p)<0成立,則實(shí)數(shù)p的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣ x3+ x2﹣2x(a∈R)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案