已知f(x)是定義在R上的函數(shù),f(1)=1,且?x1,x2∈R,總有f(x1+x2)=f(x1)+f(x2)+1恒成立.
(Ⅰ)求證:f(x)+1是奇函數(shù);
(Ⅱ)對?n∈N*,有,,求:Sn=a1a2+a2a3+…+anan+1;
(Ⅲ)求F(n)=an+1+an+2+…+a2n(n≥2,n∈N)的最小值.
【答案】分析:(1)要證函數(shù)f(x)+1是奇函數(shù),即證明f(-x)+1=-[f(x)+1].令x1=x2=0得f(0)=-1,再令x1=x,x2=-x,得f(0)=f(x)+f(-x)+1,移向整理即可.
(2)令x1=n,x2=1得f(n+1)=f(n)+2,所以f(n)=2n-1,,,
得出,裂項后求出Sn,又,利用錯位相消法求出Tn
(3))由,判斷得出F(n)隨的增大而增大,F(xiàn)(2)為所求的最小值.
解答:解:(1)證明:f(x1+x2)=f(x1)+f(x2)+1,
令x1=x2=0得f(0)=-1,再令x1=x,x2=-x,得f(0)=f(x)+f(-x)+1
∴f(-x)+1=-[f(x)+1],
函數(shù)f(x)+1是奇函數(shù).
(2)令x1=n,x2=1得f(n+1)=f(n)+2,所以f(n)=2n-1,,,





由①-②得出

=
計算整理得出得

(3)∵
∴F(n+1)>F(n).又n≥2,
∴F(n)的最小值為
點評:本題考查數(shù)列通項公式求解,數(shù)列求和中的裂項法、錯位相消法.考查構(gòu)造、變形、計算、推理論證能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習冊答案