在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點(diǎn)個(gè)數(shù),并說明理由.

(1)(2)曲線與曲線只有一個(gè)交點(diǎn).

解析試題分析:(Ⅰ)由已知得  1分
消去參數(shù),得 .            3分
(Ⅱ)由得曲線的直角坐標(biāo)方程為, 4分
消去,得,      5分
解得           6分
故曲線與曲線只有一個(gè)交點(diǎn).                  7分
考點(diǎn):參數(shù)方程與坐標(biāo)系
點(diǎn)評(píng):主要是考查了拋物線的參數(shù)方程以及直線的極坐標(biāo)方程的運(yùn)用,聯(lián)立方程組求解交點(diǎn)的思想,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),橢圓左右焦點(diǎn)分別為,上頂點(diǎn)為為等邊三角形.定義橢圓C上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CA、B兩點(diǎn),若點(diǎn)A、B的“伴隨點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定直線動(dòng)圓M與定圓外切且與直線相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是曲線C上兩動(dòng)點(diǎn)(異于坐標(biāo)原點(diǎn)O),若求證直線AB過一定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)是橢圓C上一點(diǎn),的周長為16,設(shè)線段MOO為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,直線的參數(shù)方程為(t 為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于點(diǎn)A,B,若點(diǎn)P的坐標(biāo)為(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請(qǐng)判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線L交拋物線y=2x于M(x,y),N(x,y)兩點(diǎn). ⑴寫出直線L的方程;⑵求xx與yy的值;⑶求證:OM⊥ON

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A(,),B(,)是函數(shù)的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線上,且.
(1)求+的值及+的值
(2)已知,當(dāng)時(shí),+++,求;
(3)在(2)的條件下,設(shè)=,為數(shù)列{}的前項(xiàng)和,若存在正整數(shù)、
使得不等式成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線經(jīng)過拋物線的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).

(1)若,求點(diǎn)A的坐標(biāo);
(2)若直線的傾斜角為,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案