已知橢圓C:的離心率為
.雙曲線
的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為( )
A.![]() | B.![]() | C.![]() | D.![]() |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知圓M過(guò)定點(diǎn),圓心M在二次曲線
上運(yùn)動(dòng)(1)若圓M與y軸相切,求圓M方程;(2) 已知圓M的圓心M在第一象限, 半徑為
,動(dòng)點(diǎn)
是圓M外一點(diǎn),過(guò)點(diǎn)
與圓M相切的切線的長(zhǎng)為3,求動(dòng)點(diǎn)
的軌跡方程;(3)若圓M與x軸交于A,B兩點(diǎn),設(shè)
,求
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-1,0),(1,0),離心率
,直線
與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過(guò)坐標(biāo)原點(diǎn),求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知F是拋物線y2=x的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB
的中點(diǎn)到y(tǒng)軸的距離為
A. B.1 C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知是拋物線
的焦點(diǎn),
是該拋物線上的兩點(diǎn).若線段
的中點(diǎn)到
軸的距離為
,則
( �。�
A.2 | B.![]() | C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
從橢圓短軸的一個(gè)端點(diǎn)看長(zhǎng)軸的兩個(gè)端點(diǎn)的視角為,那么此橢圓的離心率為( )
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
若雙曲線-
=1(a>0,b>0)上不存在點(diǎn)P,使得右焦點(diǎn)F關(guān)于直線OP(O為雙曲線的中心)的對(duì)稱(chēng)點(diǎn)在y軸上,則該雙曲線離心率的取值范圍為( )
A.(![]() | B.[![]() |
C.(1,![]() | D.(1,![]() |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com