12.如圖,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為120°.

分析 由已知($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,得($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}+\overrightarrow•\overrightarrow{a}=0$,展開數(shù)量積公式,代入向量的模,求得向量$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值,則答案可求.

解答 解:如圖,
設(shè)向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ(0°≤θ≤180°),
由|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,
得($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}+\overrightarrow•\overrightarrow{a}=0$,即${\overrightarrow{a}}^{2}+|\overrightarrow||\overrightarrow{a}|cosθ=0$,
∴1+2cosθ=0,得cosθ=-$\frac{1}{2}$.
∴θ=120°.
故答案為:120°.

點(diǎn)評(píng) 本題考查數(shù)量積表示兩個(gè)向量的夾角,考查了向量垂直與數(shù)量積間的關(guān)系,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$y=3sin(\frac{π}{4}-3x)$的最小正周期為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的實(shí)軸長為4,則其漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)是R上的偶函數(shù),且在x≤0上是減函數(shù),若f(2x)>f($\frac{1}{2}$),則實(shí)數(shù)x的取值范圍是( 。
A.x<-1B.x>-1C.x≤-1D.x≥-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=x2-2x,則f(3)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正方體ABCD-A1B1C1D1的棱長為6,半徑為$\sqrt{6}$的圓O1在平面A1B1C1D1內(nèi),其圓心O1為正方形A1B1C1D1的中心,P為圓O1上有一個(gè)動(dòng)點(diǎn),則多面體PABCD的外接球的表面積為( 。
A.88πB.80πC.$\frac{88\sqrt{22}}{3}$πD.$\frac{160\sqrt{5}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)f(x)=2sinxcosx,x∈R的圖象,只需將函數(shù)g(x)=2cos2x-1,x∈R的圖象( 。
A.向左平移$\frac{π}{2}$個(gè)單位B.向右平移$\frac{π}{2}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S2015>0,S2016<0,則前n項(xiàng)和Sn取最大值時(shí)n的值為(  )
A.1009B.1008C.1007D.1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知關(guān)于x的不等式x2+ax+b<0的解集為(1,2),則關(guān)于x的不等式bx2+ax+1>0的解集為$(-∞,\frac{1}{2})∪(1,+∞)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案