某醫(yī)藥研究所開發(fā)一種新藥,在試驗藥效時發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時間x(小時)之間滿足y=其對應曲線(如圖所示)過點.
 
(1)試求藥量峰值(y的最大值)與達峰時間(y取最大值時對應的x值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時間(精確到0.01小時)?
(1)y取最大值時,對應的x值為1.(2)3.85小時
(1)由曲線過點,可得,故a=8.
當0<x<1時,y==4,
當x≥1時,設2x-1=t,可知t≥1,
y==4(當且僅當t=1,即x=1時,等號成立).
綜上可知ymax=4,且當y取最大值時,對應的x值為1.
所以藥量峰值為4微克,達峰時間為1小時.
(2)當0<x<1時,由=1,可得x2-8x+1=0,
解得x=4±,又4+>1,故x=4-.
當x≥1時,設2x-1=t,則t≥1,=1,可得=1,解得t=4±,
又t≥1,故t=4+,所以2x-1=4+,可得x=log2(4+)+1.
由圖像知當y≥1時,對應的x的取值范圍是[4-,log2(4+)+1],
log2(4+)+1-(4-)≈3.85,
所以成人按規(guī)定劑量服用該藥后一次能維持大約3.85小時的有效時間.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調遞增.
(2)若a>0且f(x)在(1,+∞)上單調遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x∈[-3,2],求f(x)=+1的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,為偶函數(shù)且有最小值的是(  )
A.f(x)=x2xB.f(x)=|ln x|
C.f(x)=xsin xD.f(x)=ex+ex

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=1-(  )
A.在(-1,+∞)上單調遞增
B.在(1,+∞)上單調遞增
C.在(-1,+∞)上單調遞減
D.在(1,+∞)上單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)是R上的單調遞增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值(  )
A.恒為正數(shù)
B.恒為負數(shù)
C.恒為0
D.可以為正數(shù)也可以為負數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則下面結論正確的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(  ).
A.(-1,1)B.(-1,+∞)
C.(-∞,-1)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間單調遞減,則滿足取值范圍是(     )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案