解答:
解:(Ⅰ)曲線y=f(x)過(guò)點(diǎn)P(1,1),則a=1,
f(x)=x-lnx, f′(x)=1-=.∵f'(1)=0,∴曲線y=f(x)在點(diǎn)P處的切線方程為y=1.---------------(4分)
(Ⅱ)f(x)的定義域?yàn)椋?,+∞)
f′(x)=(1-a)x+a-==-------------(5分)
當(dāng)a=1時(shí),f(x)=x-lnx,f′(x)=1-
=
,得x>1,
∴x∈[1,2]時(shí)f'(x)≥0,f(x)單調(diào)遞增,f(x)
max=f(2)=2-ln2;
當(dāng)1-a>0即a<1時(shí),f'(x)=0的兩根為
1,,且
1>,∴x∈[1,2]時(shí)f'(x)≥0,f(x)單調(diào)遞增,f(x)
max=f(2)=2-ln2;
當(dāng)1-a<0即a>1時(shí),f'(x)=0的兩根為
1,,
①當(dāng)
1≥即a≥2時(shí),x∈[1,2]時(shí)f'(x)≤0,f(x)單調(diào)遞減,
f(x)max=f(1)=;
②當(dāng)
1<即1<a<2時(shí),
x∈(1,)時(shí)f'(x)>0,f(x)單調(diào)遞增,
x∈(,+∞)時(shí)f'(x)<0,f(x)單調(diào)遞減.
若
≥2即
1<a≤時(shí),x∈[1,2]時(shí)f(x)單調(diào)遞增,f(x)
max=f(2)=2-ln2;
若
<2,即
<a<2時(shí),
f(x)max=f()=+ln(a-1);
綜上,
f(x)max= | 2-ln2,a≤ | +ln(a-1),<a<2 | ,a≥2 |
| |
.---------------------------(12分)