【題目】如圖,已知四棱錐的底面為邊長(zhǎng)為2的菱形,平面,,為棱上一點(diǎn),且.

1)求證:;

2)求二面角的余弦值;

3)求三棱錐的體積.

【答案】1)證明見(jiàn)解析;(23

【解析】

1)由平面,又底面為菱形可得,則平面,從而;

2)設(shè)菱形的對(duì)角線交點(diǎn)為,以為原點(diǎn),分別以、的方向?yàn)?/span>軸建立空間直角坐標(biāo)系,借助空間向量求出平面法向量的夾角,從而求出答案;

3)由圖可知,由題意可知三棱錐的高為,由此可求出答案.

解:(1)因平面,故,

又因底面為菱形,故,

,平面,

平面,

平面,

;

2)設(shè)菱形的對(duì)角線交點(diǎn)為,因,平面

為原點(diǎn),分別以的方向?yàn)?/span>,軸建立如圖所示的空間直角坐標(biāo)系,

,,,

,

,,

∴平面和平面的一個(gè)法向量分別為,

,

由圖可知二面角的平面角為銳角,

∴二面角的余弦值為

3)由圖可知,

,可知三棱錐的高為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)都是定義在上的單調(diào)減函數(shù),且,若對(duì)于任意,存在,使得成立,則稱上的被追逐函數(shù),若,下述四個(gè)結(jié)論中正確的是(

上的被追逐函數(shù);

②若和函數(shù)關(guān)于軸對(duì)稱,則上的被追逐函數(shù);

③若上的被追逐函數(shù),則;

④存在,使得上的被追逐函數(shù)”.

A.①③④B.①②④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一旅游區(qū)內(nèi)原有兩條互相垂直且相交于點(diǎn)O的道路l1,l2,一自然景觀的邊界近似為圓形,其半徑約為1千米,景觀的中心Cl1,l2的距離相等,點(diǎn)C到點(diǎn)O的距離約為10千米.現(xiàn)擬新建四條游覽道路方便游客參觀,具體方案:在線段OC上取一點(diǎn)P,新建一條道路OP,并過(guò)點(diǎn)P新建兩條與圓C相切的道路PM,PNM,N為切點(diǎn)),同時(shí)過(guò)點(diǎn)P新建一條與OP垂直的道路ABA,B分別在l1,l2上).為促進(jìn)沿途旅游經(jīng)濟(jì),新建道路長(zhǎng)度之和越大越好,求新建道路長(zhǎng)度之和的最大值.(所有道路寬度忽略不計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)在區(qū)間內(nèi)恰好有奇數(shù)個(gè)零點(diǎn),則實(shí)數(shù)k的所有取值之和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題12分)

A、B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對(duì)比試驗(yàn)。每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效。若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠只數(shù)比服用B有效的多,就稱該試驗(yàn)組為甲類組。設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為

()求一個(gè)試驗(yàn)組為甲類組的概率;

() 觀察3個(gè)試驗(yàn)組,用表示這3個(gè)試驗(yàn)組中甲類組的個(gè)數(shù),求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)在平面直角坐標(biāo)系xOy中,A(﹣20),B0,﹣2),M是曲線C上任意一點(diǎn),求ABM面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,且.

1)證明:.

2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,NP分別是C1D1,BC,A1D1的中點(diǎn),有下列四個(gè)結(jié)論:

APCM是異面直線;②AP,CMDD1相交于一點(diǎn);③MNBD1

MN∥平面BB1D1D

其中所有正確結(jié)論的編號(hào)是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是等腰梯形,,,,三角形是等邊三角形,平面平面,、分別為的中點(diǎn).

1)求證:平面平面;

2)若,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案