【題目】在三棱錐D-ABC中,,且,,M,N分別是棱BC,CD的中點(diǎn),下面結(jié)論正確的是( )
A.B.平面ABD
C.三棱錐A-CMN的體積的最大值為D.AD與BC一定不垂直
【答案】ABD
【解析】
根據(jù)題意畫出三棱錐D-ABC,取中點(diǎn),連接:對于A,根據(jù)等腰三角形性質(zhì)及線面垂直判定定理可證明平面,從而即可判斷A;對于B,由中位線定理及線面平行判定定理即可證明;對于C,當(dāng)平面平面時(shí),三棱錐A-CMN的體積最大,由線段關(guān)系及三棱錐體積公式即可求解;對于D,假設(shè),通過線面垂直判定定理可得矛盾,從而說明假設(shè)不成立,即可說明原命題成立即可.
根據(jù)題意,畫出三棱錐D-ABC如下圖所示,取中點(diǎn),連接:
對于A,因?yàn)?/span>,且,,
所以為等腰直角三角形,
則且,
則平面,
所以,即A正確;
對于B,因?yàn)?/span>M,N分別是棱BC,CD的中點(diǎn),
由中位線定理可得,而平面,平面,
所以平面,即B正確;
對于C,當(dāng)平面平面時(shí),三棱錐A-CMN的體積最大,
則最大值為,即C錯(cuò)誤;
對于D,假設(shè),由,且,
所以平面,則,
又因?yàn)?/span>,且,
所以平面,由平面,則,
由題意可知,因而不能成立,因而假設(shè)錯(cuò)誤,所以D正確;
綜上可知,正確的為ABD,
故選:ABD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾分類,是指按一定規(guī)定或標(biāo)準(zhǔn)將垃圾分類儲存、分類投放和分類搬運(yùn),從而轉(zhuǎn)變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價(jià)值和經(jīng)濟(jì)價(jià)值,力爭物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個(gè)重點(diǎn)城市,要基本建成垃圾分類處理系統(tǒng);其他地級城市實(shí)現(xiàn)公共機(jī)構(gòu)生活垃圾分類全覆蓋.某機(jī)構(gòu)欲組建一個(gè)有關(guān)“垃圾分類”相關(guān)事宜的項(xiàng)目組,對各個(gè)地區(qū)“垃圾分類”的處理模式進(jìn)行相關(guān)報(bào)道.該機(jī)構(gòu)從600名員工中進(jìn)行篩選,篩選方法:每位員工測試,,三項(xiàng)工作,3項(xiàng)測試中至少2項(xiàng)測試“不合格”的員工,將被認(rèn)定為“暫定”,有且只有一項(xiàng)測試“不合格”的員工將再測試,兩項(xiàng),如果這兩項(xiàng)中有1項(xiàng)以上(含1項(xiàng))測試“不合格”,將也被認(rèn)定為“暫定”,每位員工測試,,三項(xiàng)工作相互獨(dú)立,每一項(xiàng)測試“不合格”的概率均為.
(1)記某位員工被認(rèn)定為“暫定”的概率為,求;
(2)每位員工不需要重新測試的費(fèi)用為90元,需要重新測試的總費(fèi)用為150元,除測試費(fèi)用外,其他費(fèi)用總計(jì)為1萬元,若該機(jī)構(gòu)的預(yù)算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預(yù)算?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-1時(shí),設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點(diǎn),求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP恒過定點(diǎn),且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,,點(diǎn)在線段上,.把沿翻折至的位置,平面,連結(jié),點(diǎn)在線段上,,如圖2.
(1)證明:平面;
(2)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動弦,直線與軸交于點(diǎn),直線與直線的交點(diǎn)為.
(1)證明:點(diǎn)恒在橢圓上.
(2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動弦,直線與軸交于點(diǎn),直線與直線的交點(diǎn)為.
(1)證明:點(diǎn)恒在橢圓上.
(2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何是美籍法國數(shù)學(xué)家芒德勃羅在20世紀(jì)70年代創(chuàng)立的一門數(shù)學(xué)新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個(gè)正三角形,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的每個(gè)小正三角形中又挖去一個(gè)“中心三角形”.按上述方法無限連續(xù)地作下去直到無窮,最終所得的極限圖形稱為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com