已知橢圓C:=1(a>b>0)的離心率e=,一條準線方程為x=

(1)求橢圓C的方程;

(2)設G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.

①當直線OG的傾斜角為60°時,求△GOH的面積;

②是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.

 

(1)(2)①S△GOH=②x2+y2=

【解析】(1)因為,,a2=b2+c2,

解得a=3,b=,所以橢圓方程為

(2)①由解得 得

所以OG=,OH=,所以S△GOH=.

②假設存在滿足條件的定圓,設圓的半徑為R,則OG·OH=R·GH,

因為OG2+OH2=GH2,故,

當OG與OH的斜率均存在時,不妨設直線OG方程為y=kx,

所以OG2=,

同理可得OH2=,(將OG2中的k換成-可得),R=

當OG與OH的斜率有一個不存在時,可得

故滿足條件的定圓方程為:x2+y2=

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題

已知圓O的半徑為1,PA、PB為該圓的兩條切線,A、B為兩切點,那么·的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為______________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

已知點A(4,-3),B(2,-1)和直線l:4x+3y-2=0,求一點P使|PA|=|PB|,且點P到l的距離等于2.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題

直線l經過點(3,0),且與直線l′:x+3y-2=0垂直,則l的方程是______________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,焦點F的坐標為(1,0).

(1)求拋物線C的標準方程;

(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過點A(4,0),且被圓C1截得的弦長為2,求直線l的方程;

(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

如圖,過拋物線C:y2=4x上一點P(1,-2)作傾斜角互補的兩條直線,分別與拋物線交于點A(x,y1),B(x2,y2).

(1)求y1+y2的值;

(2)若y1≥0,y2≥0,求△PAB面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練文數(shù)學卷(解析版) 題型:解答題

已知公比不為1的等比數(shù)列的前項和為,,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

 

查看答案和解析>>

同步練習冊答案