精英家教網 > 高中數學 > 題目詳情

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:

(1)PA∥平面MDB;
(2)PD⊥BC.

(1)詳見解析;(2)詳見解析.

解析試題分析:(1)線面平行的判定關鍵在證相應線線平行,線線平行的證明或尋求需要結合平面幾何的知識,如中位線平行于底面,因為本題中M為PC中點,所以應取BD的中點作為解題突破口;(2)線線垂直的證明一般需要經過多次線線垂直與線面垂直的轉化,而對于面面垂直,基本是單向轉化,即作為條件,就將其轉化為線面垂直;作為結論,只需尋求線面垂直. 如本題中面PCD與面ABCD垂直,就轉化為BC平面PCD,到此所求問題轉化為:已知線面垂直,要求證線線垂直.在線線垂直與線面垂直的轉化過程中,要注意充分應用平面幾何中的垂直條件,如矩形鄰邊相互垂直.
試題解析:證明:(1)連結AC交BD于點O,連結OM.    2分
因為M為PC中點,O為AC中點,
所以MO//PA.                                      4分
因為MO平面MDB,PA平面MDB,
所以PA//平面MDB.                                 7分
(2)因為平面PCD平面ABCD,
平面PCD平面ABCD=CD,
BC平面ABCD,BCCD,
所以BC平面PCD.            12分
因為PD平面PCD,
所以BCPD                  14分
考點:直線與平面平行判定定理,面面垂直性質定理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,四棱錐中,底面為梯形,,,平面平面,

(1)求證:平面;
(2)求證:
(3)是否存在點,到四棱錐各頂點的距離都相等?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知在四棱錐中, 底面四邊形是直角梯形, ,,.

(1)求證:;
(2)求直線與底面所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.

(Ⅰ)若M為PA中點,求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

等邊三角形的邊長為3,點分別是邊、上的點,且滿足(如圖1).將△沿折起到△的位置,使二面角為直二面角,連結 (如圖2).

(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖:長方形所在平面與正所在平面互相垂直,分別為的中點.

(Ⅰ)求證:平面;
(Ⅱ)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點 
的位置,并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱柱中,平面,, ,分別是,的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直三棱柱中,,是棱上的一點,的延長線與的延長線的交點,且∥平面。

(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案