已知:數(shù)列{an}滿足a1=16,an+1-an=2n,則的最小值為( )
A.8
B.7
C.6
D.5
【答案】分析:a2-a1=2,a3-a2=4,…,an+1-an=2n,這n個(gè)式子相加,就有an+1=16+n(n+1),故,由此能求出的最小值.
解答:解:a2-a1=2,
a3-a2=4,

an+1-an=2n,
這n個(gè)式子相加,就有
an+1=16+n(n+1),
即an=n(n-1)+16=n2-n+16,
,
用均值不等式,知道它在n=4的時(shí)候取最小值7.
故選B.
點(diǎn)評:本題考查數(shù)更列的性質(zhì)和應(yīng)用,解題時(shí)要注意遞推公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+
1
2
,(x≤
1
2
)
2x-1,(
1
2
<x<1)
x-1,(x≥1)
,若數(shù)列{an}滿a1=
7
3
,an+1=f(an),n∈N*,則a2006+a2009+a2010=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿bn=lgan,b3=18,b6=12,則數(shù)列{bn}前n項(xiàng)和的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市黃州一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿bn=lgan,b3=18,b6=12,則數(shù)列{bn}前n項(xiàng)和的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡市黃州一中高三(上)月考數(shù)學(xué)試卷(1月份)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河南省開封市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)=若數(shù)列{an}滿a1=,an+1=f(an),n∈N*,則a2006+a2009+a2010=   

查看答案和解析>>

同步練習(xí)冊答案