【題目】從某學校高三年級共800名男生中隨機抽取50名測量身高,據(jù)測量被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)、第二組[160,165);…第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第六組比第七組多1人,第一組和第八組人數(shù)相同.
(I)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(Ⅱ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x、y,求滿足|x﹣y|≤5的事件概率.
【答案】解:(I):由直方圖知,前五組頻率為(0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三組頻率為1﹣0.82=0.18,人數(shù)為0.18×50=9(人),
由直方圖得第八組頻率為:0.008×5=0.04,人數(shù)為0.04×50=2(人),
設第六組人數(shù)為m,則第七組人數(shù)為m﹣1,又m+m﹣1+2=9,所以m=4,
即第六組人數(shù)為4人,第七組人數(shù)為3人,頻率分別為0.08,0.06,
頻率除以組距分別等于0.016,0.012,見圖,
(Ⅱ)由(1)知身高在[180,185]內(nèi)的人數(shù)為4人,設為a,b,c,d.身高在[190,195]的人數(shù)為2人,設為A,B.
若x,y∈[180,185]時,有ab,ac,ad,bc,bd,cd共六種情況.
若x,y∈[190,195]時,有AB共一種情況.
若x,y分別在[180,185],[190,195]內(nèi)時,有aA,bA,cA,dA,aB,bB,cB,dB共8種情況
所以基本事件的總數(shù)為6+8+1=15種,
事件|x﹣y|≤5所包含的基本事件個數(shù)有6+1=7種,故滿足|x﹣y|≤5的事件概率p= .
【解析】(I)由直方圖求出前五組的頻率,進一步得到后三組的頻率,然后求出后三組的人數(shù)和,再由第八組的頻率求出第八組的人數(shù),設出第六組的人數(shù)m,求出m的值,則第六組、第七組的頻率可求;(Ⅱ)分別求出身高在[180,185)內(nèi)和在[190,195)的人數(shù),標號后利用列舉法寫出從中隨機抽取兩名男生的所有情況,查出滿足|x﹣y|≤5的事件個數(shù),然后利用古典概型概率計算公式求解
【考點精析】本題主要考查了頻率分布直方圖的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
有明顯拖延癥 | 無明顯拖延癥 | 合計 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合計 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
①當點為“準圓”與軸正半軸的交點時,求直線的方程并證明;
②求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入 萬作為技改費用,投入(50+2x)萬元作為宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所稱角的最小值為45°;
④直線AB與a所稱角的最小值為60°;
其中正確的是________。(填寫所有正確結(jié)論的編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com