3.已知全集N=Z,集合A={-1,1,2,3,4},B={-2,-1,0,1,2},則(∁UA)∩B=( 。
A.{3,4}B.{-2,3}C.{-2,4}D.{-2,0}

分析 根據(jù)集合的基本運算進行求解即可.

解答 解:∵全集N=Z,集合A={-1,1,2,3,4},B={-2,-1,0,1,2},
∴(∁UA)∩B={-2,0},
故選:D

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,若a1=$\frac{6}{7}$,則a2017=(  )
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{5}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{16}=1\;(a>0)$的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線C上,如果|PF1|-|PF2|=10,那么該雙曲線的漸近線方程為y=±$\frac{4}{5}$x,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若點P為橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的動點,G點滿足$\overrightarrow{PG}$=2$\overrightarrow{GO}$(O是坐標原點),則G的軌跡方程為( 。
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1B.$\frac{4{x}^{2}}{9}$+y2=1C.$\frac{9{x}^{2}}{4}$+3y2=1D.x2+$\frac{4{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知p1:直線l1:x-y-1=0與直線l2:x+ay-2=0平行,q:a=-1,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,D是AC中點,延長AB至E,BE=AB,連接DE交BC于點F,則$\overrightarrow{AF}$=( 。
A.$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$B.$\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$C.$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.求滿足下列條件的直線方程:
(1)已知A(2,2)和直線l:3x+4y-20=0,求過A和直線l垂直的直線方程;
(2)求過定點P(2,3)且在兩坐標軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.語句p:曲線x2-2mx+y2-4y+2m+7=0表示圓;語句q:曲線$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a、b、c分別為角A、B、C所對的邊,b=1,且2cosC-2a-c=0.
(Ⅰ)求角B的大。
(Ⅱ)求△ABC外接圓的圓心到AC邊的距離.

查看答案和解析>>

同步練習冊答案