給定函數(shù)f(x)=(a>0,a≠1).

(1)求函數(shù)的定義域;

(2)當f(x)>1時,求x的取值范圍;

(3)當x>1時,判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論.

答案:
解析:

  解 (1)由≠0知函數(shù)的定義域為x∈(0,1)∪(1,+∞).

  (2)令>1,則當a>1時,得x∈(0,)∪(,+∞);當0<a<1時,x∈(,).

  (3)任取1<,則a>1時,>1,這時,即a>1時,f(x)在(1,+∞)上單調(diào)遞增.同理可得0<a<1時,f(x)在(1,+∞)上也單調(diào)遞增.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)給定函數(shù)f(x)=
x2
2(x-1)

(1)試求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)已知各項均為負的數(shù)列{an}滿足,4Sn•f(
1
an
)=1
,求證:-
1
an+1
ln
n+1
n
<-
1
an

(3)設(shè)bn=-
1
an
,Tn為數(shù)列 {bn} 的前n項和,求證:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•昌平區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導數(shù),f″(x)是函數(shù)f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)上面探究結(jié)果,解答以下問題
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
1
2
,1)
1
2
,1)

(2)計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定函數(shù)f(x)=
x3
3
-ax2+(a2-1)x
g(x)=x+
a2
x

(I)求證:f(x)總有兩個極值點;
(II)若f(x)和g(x)有相同的極值點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定函數(shù)f(x)=
10x-10-x2

(1)求f-1(x);
(2)判斷f-1(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定函數(shù)f(x)=
x
0
(2t-m)dt+2m-3
(x>0,m為實常數(shù)),g(x)=
5
2
x3
,
(Ⅰ)若函數(shù)f(x)在[2,4]上的最大值為1,求實數(shù)m的取值集合A;
(Ⅱ)在(Ⅰ)的條件下,若g(x)≥ax在區(qū)間[
2
2
,
2
]上恒成立時實數(shù)a的取值集合為B,全集為R,
求(?RA)∩(?RB).

查看答案和解析>>

同步練習冊答案