精英家教網 > 高中數學 > 題目詳情
已知各項均為正整數的數列{an}滿足a1<4,an+1=2an+1,且對任意n∈N*恒成立.數列{an}{bn}滿足等式2(λn+bn)=2nλn+an+1(λ>0).

(1)求證:數列{an+1}是等比數列,并求出{an}的通項公式;

(2)求數列{bn}的前n項和Sn;

(3)證明存在k∈N*,使得對任意n∈N*均成立.

解:(1)證明:由an+1=2an+1得an+1+1=2(an+1),

∵a1>0,∴a1+1>1.∴{an+1}是等比數列.

,∴,即·對任意n∈N*恒成立.

<4.∴a1≥3.

∵a1<4,a1∈N*,∴a1=3.∴an+1=4·2n-1.∴an=2n+1-1.

(2)由2(λn+bn)=2nλn+an+1(λ>0)得bn=(n-1)λn+2n,

設數列{(n-1)λn}的前n項的和為Tn,∴Tn2+2λ3+3λ4+…+(n-1)λn,

λTn3+2λ4+…+(n-2)λn+(n-1)λn+1,(1-λ)Tn234+…+λn-(n-1)λn+1,

當λ=1時,Tn=1+2+…+(n-1)=,

當λ≠1時,Tn=,

∴Sn=

(3)存在k=1滿足題意,

證明:2n·λn+1≤(n-1)λn+2+4(n-1)λn+2nλ2.(*)

當n≥2時,∵(n-1)λn+2+4(n-1)λn+2nλ2=(n-1)λn2+4)+2nλ2≥(n-1)λn·4λ+2nλ2>(4n-4)λn+1≥2nλn+1,又n=1時,(*)式成立.∴對任意n∈N*,(*)式成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知各項均為正整數的數列{an}滿足a1<4,an+1=2an+1,且
n
i=1
1
1+ai
1
2
對任意n∈N恒成立.數列{an},{bn}滿足等式2(λn+bn)=2nλn+an+1(λ>0).
(1)求證數列{ an+l}是等比數列,并求出{an}的通項公式;
(2)求數列{bn}的前n項和Sn;
(3)證明存在k∈N,使得
bn+1
bn
bk+1
bk
對任意n∈N均成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇二模)已知各項均為正整數的數列{an}滿足an<an+1,且存在正整數k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當k=3,a1a2a3=6時,求數列{an}的前36項的和S36
(2)求數列{an}的通項an;
(3)若數列{bn}滿足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項積為Tn,試問n為何值時,Tn取得最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知各項均為正整數的數列{an}滿足a1<4,an+1=2an+1,且對任意n∈N*恒成立.數列{an},{bn}滿足等式2(λn+bn)=2nλn+an+1(λ>0).

(1)求證:數列{an+1}是等比數列,并求出{an}的通項公式;

(2)求數列{bn}的前n項和Sn;

(3)證明存在k∈N*,使得對任意n∈N*均成立.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省徐州市高三第二次質量檢測數學試卷Ⅰ(解析版) 題型:解答題

已知各項均為正整數的數列{an}滿足an<an+1,且存在正整數k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當k=3,a1a2a3=6時,求數列{an}的前36項的和S36;
(2)求數列{an}的通項an;
(3)若數列{bn}滿足,且b1=192,其前n項積為Tn,試問n為何值時,Tn取得最大值?

查看答案和解析>>

同步練習冊答案