【題目】如果函數(shù)f(x)=x3-x滿足:對(duì)于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是( )
A. [-, ]
B. [-, ]
C. (-∞,- ]∪[,+∞)
D. (-∞,- ]∪[,+∞)
【答案】D
【解析】∵f′(x)=x2-1,
∴當(dāng)0<x<1時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)1<x<2時(shí),f′(x)>0,f(x)單調(diào)遞增.
∴f(x)=x3-x在x=1時(shí)取到極小值,也是x∈[0,2]上的最小值,
∴f(x)極小值=f(1)=-=f(x)最小值,
又∵f(0)=0,f(2)=,
∴在x∈[0,2]上,f(x)最大值=f(2)=,∵對(duì)于任意的x1,x2∈[0,2],
∴都有|f(x1)-f(x2)|≤a2恒成立,
∴只需a2≥|f(x)最大值-f(x)最小值|=-(-)=即可,
∴a≥或a≤-.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x)萬元,當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不少于80千件時(shí),C(x)=51x+-1 450(萬元).通過市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠年內(nèi)生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤(rùn)L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】某校冬令營(yíng)有三名男同學(xué)A,B,C和三名女同學(xué)X,Y,Z,
(1)從6人中抽取2人參加知識(shí)競(jìng)賽,求抽取的2人都是男生的概率;
(2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:,其中(e為橢圓離心率),焦距為2,過點(diǎn)M(4,0)的直線l與橢圓C交于點(diǎn)A,B,點(diǎn)B在AM之間.又點(diǎn)A,B的中點(diǎn)橫坐標(biāo)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,則不等式m2+5m-3≥|x1-x2|對(duì)任意實(shí)數(shù)a∈[-1,1]恒成立.若p不正確,q正確,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月份鄭州市進(jìn)行了高三學(xué)生的體育學(xué)業(yè)水平測(cè)試,為了考察高中學(xué)生的身體素質(zhì)比情況,現(xiàn)抽取了某校1000名(男生800名,女生200名)學(xué)生的測(cè)試成績(jī),根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表:
男生測(cè)試情況:
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 5 | 10 | 15 | 47 |
女生測(cè)試情況
抽樣情況 | 病殘免試 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
人數(shù) | 2 | 3 | 10 | 2 |
(1)現(xiàn)從抽取的1000名且測(cè)試等級(jí)為“優(yōu)秀”的學(xué)生中隨機(jī)選出兩名學(xué)生,求選出的這兩名學(xué)生恰好是一男一女的概率;
(2)若測(cè)試等級(jí)為“良好”或“優(yōu)秀”的學(xué)生為“體育達(dá)人”,其它等級(jí)的學(xué)生(含病殘免試)為“非體育達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為體育達(dá)人”與性別有關(guān)?
男性 | 女性 | 總計(jì) | |
體育達(dá)人 | |||
非體育達(dá)人 | |||
總計(jì) |
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn), 為的中點(diǎn).
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,二面角的大小為90°,, , , .
(1)求證: ;
(2)試確定的值,使得直線與平面所成的角的正弦值為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com