7.一個幾何體的三視圖如圖.該幾何體的各個頂點(diǎn)都在球O的球面上,球O的體積為( 。
A.$\frac{\sqrt{2}}{3}$πB.$\frac{4\sqrt{2}}{3}$πC.$\frac{8\sqrt{2}}{3}$πD.$\frac{10\sqrt{2}}{3}$π

分析 幾何體為三棱錐,且三棱錐的一條側(cè)棱與底面垂直,底面為等腰直角三角形,取O為SC的中點(diǎn),可證OS=OC=OA=OB,由此求得外接球的半徑,代入球的體積公式計算.

解答 解:由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱與底面垂直,高為2,
底面為等腰直角三角形,如圖:SA⊥平面ABC,SA=2,AC的中點(diǎn)為D,
在等腰直角三角形SAC中,取O為SC的中點(diǎn),∴OS=OC=OA=OB,
∴O為三棱錐外接球的球心,R=$\sqrt{2}$,
∴外接球的體積V=$\frac{4}{3}$π×($\sqrt{2}$)3=$\frac{8\sqrt{2}}{3}$.
故選:C.

點(diǎn)評 本題考查了由三視圖求幾何體的外接球的體積,判斷幾何體的特征性質(zhì)及數(shù)據(jù)所對應(yīng)的幾何量是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,若a4+b4+c4=2c2(a2+b2),則角C的度數(shù)是45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知點(diǎn)A、B的坐標(biāo)分別是(-3,0),(3,0),點(diǎn)C為線段AB上任一點(diǎn),P、Q分別以AC和BC為直徑的兩圓O1,O2的外公切線的切點(diǎn),求線段PQ的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={-2≤x≤3},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求m的取值集合;
(2)若A⊆B,求m的取值集合;
(3)是否存在實(shí)數(shù)m,使得A=B?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C1;x2=3y與圓C2:x2+(y-3)2=1.
(1)求證:圓C2在拋物線C1內(nèi)部;
(2)是否存在直線y=2x+b與圓C2和拋物線C1的從左到右的交點(diǎn)為A,B,C,D,使AB=CD?
(3)直線l被圓C2和拋物線C1截成長度相等的三部分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足n2an=(n2-1)an-1(n≥2,n∈N*),a1=2,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知三次函數(shù)f(x)=(x-1)(x-2)(x-a)(1<a<2),則$\frac{1}{f′(1)}$+$\frac{4}{f′(2)}$+$\frac{{a}^{2}}{f′(a)}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知sinα=$\frac{4}{5}$,且$\frac{π}{2}<α<π$,求sin(α+$\frac{π}{4}$)、cos(α+$\frac{π}{4}$)、tan(α+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c且a2+b2-c2-ab=0,若△ABC的面積為$\frac{\sqrt{3}}{2}c$,則ab的最小值為4.

查看答案和解析>>

同步練習(xí)冊答案