【題目】已知函數(shù)().
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)的圖象全部在直線的下方,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:(1)求導(dǎo)數(shù),分和兩種情況進(jìn)行討論,可得函數(shù)的單調(diào)區(qū)間;
(2)函數(shù)的圖象全部在直線的下方,等價(jià)于在上恒成立,令,則.分和兩種情況討論函數(shù)的情況即可.
試題解析:(1)函數(shù)的定義域?yàn)?/span>,且.
當(dāng)時(shí), ,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),由,得,∴在上單調(diào)遞增;由,得,∴在上單調(diào)遞減.
(2)當(dāng)時(shí), ,則由題意知,不等式,
即在上恒成立.
令,則.
當(dāng)時(shí),則, 在區(qū)間上是增函數(shù).
∵,∴不等式在上不恒成立.
當(dāng)時(shí), 有唯一零點(diǎn),即函數(shù)的圖象與軸有唯一交點(diǎn),
即不等式在上不恒成立.
當(dāng)時(shí),令,得,則在區(qū)間上, , 是增函數(shù);
在區(qū)間上, , 是減函數(shù);
故在區(qū)間上, 的最大值為,
由,得,即的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)中學(xué)生的身體發(fā)育狀況,擬采用分層抽樣的方法從甲、乙、丙三所中學(xué)抽取個(gè)教學(xué)班進(jìn)行調(diào)查.已知甲、乙、丙三所中學(xué)分別有, , 個(gè)教學(xué)班.
(Ⅰ)求從甲、乙、丙三所中學(xué)中分別抽取的教學(xué)班的個(gè)數(shù).
(Ⅱ)若從抽取的個(gè)教學(xué)班中隨機(jī)抽取個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這個(gè)教學(xué)班中至少有一個(gè)來(lái)自甲學(xué)校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓: 的長(zhǎng)軸長(zhǎng)為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)作一條不與坐標(biāo)軸平行的直線,若交橢圓與、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為、,定點(diǎn)A(-2,0),B(2,0).
(1) 若橢圓C上存在點(diǎn)T,使得,求橢圓C的離心率的取值范圍;
(2) 已知點(diǎn)在橢圓C上.
①求橢圓C的方程;
②記M為橢圓C上的動(dòng)點(diǎn),直線AM,BM分別與橢圓C交于另一點(diǎn)P,Q,若, .求λ+μ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓: 的離心率為,過(guò)其右焦點(diǎn)與長(zhǎng)軸垂直的直線與橢圓在第一象限相交于點(diǎn), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形和梯形所在平面互相垂直, , , .
(Ⅰ)求證: 平面;
(Ⅱ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)常數(shù)和,使得和?若存在,求出和的值.若不存在,說(shuō)明理由;
(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()若曲線與直線相切于點(diǎn),求點(diǎn)的坐標(biāo).
()令,當(dāng)時(shí),求的單調(diào)區(qū)間.
()當(dāng),證明:當(dāng), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;
(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com