A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 求出導(dǎo)函數(shù)f′(x),根據(jù)題意可知f(x1)=g(x2),令h(x)=sinx+$\frac{1}{6}$x3+1-x,x≥0,求出其導(dǎo)函數(shù),進(jìn)而求得h(x)的最小值即為M、N兩點(diǎn)間的最短距離.
解答 解:∵當(dāng)x≥0時,f'(x)=cosx+$\frac{1}{2}$x2>0,∴函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增.
∵點(diǎn)M(x1,f(x1))和點(diǎn)N(x2,g(x2))分別是函數(shù)f(x)=sinx+$\frac{1}{6}$x3和g(x)=x-1圖象上的點(diǎn),
且x1≥0,x2>0,若直線MN∥x軸,則f(x1)=g(x2),即f(x)=sinx1+$\frac{1}{6}$x13=x2-1,
則M,N兩點(diǎn)間的距離為x2-x1=sinx1+$\frac{1}{6}$x13+1-x1.
令h(x)=sinx+$\frac{1}{6}$x3+1-x,x≥0,則h′(x)=cosx+$\frac{1}{2}$x2-1,h″(x)=-sinx+x≥0,
故h′(x)在[0,+∞)上單調(diào)遞增,故h′(x)=cosx+$\frac{1}{2}$x2-1≥h′(0)=0,
故h(x)在[0,+∞)上單調(diào)遞增,故h(x)的最小值為h(0)=1,
即M,N兩點(diǎn)間的距離的最小值為1,
故選:A.
點(diǎn)評 本題主要考查了利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)性以及函數(shù)的極值問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x+3y-7=0 | B. | 3x+4y-7=0 | C. | 3x-4y+1=0 | D. | 4x-3y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ②④ | C. | ②⑤ | D. | ③⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,3] | B. | (2,3) | C. | (2,+∞) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | a>b>c | D. | c>b>a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com