分析 (1)利用函數(shù)的奇偶性曲線函數(shù)的解析式即可.
(2)利用分段函數(shù)以及二次函數(shù)的性質(zhì),通過分類討論求解函數(shù)的最小值即可.
解答 解:(1)設(shè)x>0,則-x<0.又因?yàn)楫?dāng)x≤0時(shí),f(x)=x2+2x,
所以f(-x)=(-x)2+2(-x)=x2-2x,又因?yàn)閒(-x)=f(x).
所以x>0時(shí),f(x)=x2-2x.
所以f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{{x}^{2}-2x,x>0}\end{array}\right.$.
(2)函數(shù)g(x)=f(x)+(4-2a)x+2(x∈[1,2]),f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{{x}^{2}-2x,x>0}\end{array}\right.$.
∴g(x)=x2+2(1-a)x+2.x∈[1,2],
①當(dāng)a-1≤1時(shí),即a≤2,g(x)min=g(1)=5-2a
②當(dāng)1<a-1<2時(shí),即2<a<3,g(x)min=g(a-1)=-a2+2a+1
③當(dāng)a-1≥2時(shí),即a≥3,g(x)min=g(2)=10-4a
綜上:h(a)=$\left\{\begin{array}{l}{5-2a,a≤2}\\{-{a}^{2}+2a+1,a∈(2,3)}\\{10-4a,a≥3}\end{array}\right.$.
點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):函數(shù)的奇偶性,利用奇偶性求函數(shù)的解析式,利用分類討論思想求函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2<m<3 | B. | m>2 | C. | m<-1或m>2 | D. | m<-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -x+2 | B. | x-2 | C. | x+2 | D. | -x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com