(本小題滿分10分)
已知拋物線與直線交于兩點.
(Ⅰ)求弦的長度;
(Ⅱ)若點在拋物線上,且的面積為,求點P的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知橢圓經(jīng)過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題16分)設(shè)雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線于兩點.
證明:以線段為直徑的圓恒過軸上的定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓的左,右焦點。
(1)若是第一象限內(nèi)該橢圓上的一點,且·=求點的坐標(biāo)。
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標(biāo)原點),求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)橢圓C1:的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標(biāo)原點),如圖.若拋物線C2:與軸的交點為B,且經(jīng)過F1,F(xiàn)2點.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若橢圓的離心率為,焦點在軸上,且長軸長為10,曲線上的點與橢圓的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com