已知曲線,曲線,若當時,曲線在曲線的下方,則實數(shù)的取值范圍是    

 

【答案】

.

【解析】令,

,所以f(x)在區(qū)間[-2,2]上是增函數(shù),所以

當x=2時,f(x)取得最大值,最大值為.根據(jù)題意

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e是自然對數(shù)的底數(shù)).
(1)若曲線y=f(x)在x=1處的切線也是拋物線y2=4(x-1)切線,求a的值;
(2)若對于任意x∈R,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(3)當a=-1時,是否存在x0∈(0,+∞),使曲線C:y=g(x)-f(x)在點x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面內(nèi)與兩定點A(2,0),B(-2,0)連線的斜率之積等于-
1
4
的點P的軌跡為曲線C1,橢圓C2以坐標原點為中心,焦點在y軸上,離心率為
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲線C1與C2交于M、N、P、Q四點,當四邊形MNPQ面積最大時,求橢圓C2的方程及此四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鹽城二模)如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成.兩相接點M,N均在直線x=5上,圓弧C1的圓心是坐標原點O,半徑為r1=13; 圓弧C2過點A(29,0).
(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點P,滿足PA=
30
PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知曲線數(shù)學公式,曲線數(shù)學公式,若當x∈[-2,2]時,曲線C1在曲線C2的下方,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(北京卷解析版) 題型:解答題

已知曲線C:(m∈R)

(1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是

(2)當m=4時,曲線C的方程為,點A,B的坐標分別為

,得

因為直線與曲線C交于不同的兩點,所以

設(shè)點M,N的坐標分別為,則

直線BM的方程為,點G的坐標為

因為直線AN和直線AG的斜率分別為

所以

,故A,G,N三點共線。

 

查看答案和解析>>

同步練習冊答案