精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)

某初級中學有三個年級,各年級男、女生人數如下表:

初一年級

初二年級

初三年級

女生

370

z

200

男生

380

370

300

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.

   (1)求z的值;

   (2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任選2名學生,求至少有1名女生的概率;

   (3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過0.1的概率.

(Ⅰ)    (Ⅱ)   (Ⅲ)0.5


解析:

(1)由,解得

(2) 設所抽樣本中有m名女生,因為用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,所以,解得m=2;也就是抽取了2名女生,3名男生,分別記作S1,S2;B1,B2,B3;則從中任選2名的所有基本事件為(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3),共10個;其中至少有1名女生的基本事件有7個: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3), (S1, S2);所以任選2名學生,至少有1名女生的概率為.

(3) 樣本的平均數為,

那么與樣本平均數之差的絕對值不超過0.1的數為1.2, 1.2, 1.3, 1.2.這4個數,總的個數為8,所以該數與樣本平均數之差的絕對值不超過0.1的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案