【題目】已知,若存在三個不同實數(shù)使得,則的取值范圍是(

A.B.C.D.0,1

【答案】C

【解析】

先畫出分段函數(shù)fx)的圖象,然后根據(jù)圖象分析ab、c的取值范圍,再根據(jù)對數(shù)函數(shù)以及絕對值函數(shù)的性質(zhì)得出bc1,即可得到abc的取值范圍.

由題意,畫出函數(shù)fx)的圖象大致如圖所示:

∵存在三個不同實數(shù)a,b,c,使得fa)=fb)=fc),可假設(shè)abc,

∴根據(jù)函數(shù)圖象,可知:﹣2a0,0b1,c1.又∵fb)=fc),

|log2019b||log2019c|,即:﹣log2019blog2019c.∴log2019b+log2019c0

log2019bc0,即bc1.∴abca.∵﹣2a0,∴﹣2abc0

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù),其中x為自變量,a為常數(shù).

1)若當(dāng)x[02]時,函數(shù)fax)的最小值為﹣1,求a的值;

2)設(shè)全集UR,集合A{x|f3x≥0},B{x|fax+fa2x)=f22},且(UAB中,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點是曲線上一點,,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關(guān)于直線對稱;已知偶函數(shù)滿足,當(dāng)時,;若函數(shù)有五個零點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),都在處取得最小值.

(1)求的值;

(2)設(shè)函數(shù)的極值點之和落在區(qū)間,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面底面,,與平面所成的角為.

1)證明:;

2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若、分別是曲線、上的動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/

6

11

20

27

57

77

經(jīng)計算得: , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCDABAD,ACCD,∠ABC=60°,PAABBC,EPC的中點.證明:

(1)CDAE

(2)PD⊥平面ABE.

查看答案和解析>>

同步練習(xí)冊答案