設(shè)函數(shù)f(x)=
x33
-x2-3x-3a,(a大于0)
.(1)如果a=1,點p為曲線y=f(x)上一個動點,求以P為切點的切線其斜率取最小值時的切線方程;
(2)若x∈[a,3a]時,f(x)≥0恒成立,求a的取值范圍.
分析:(1)對函數(shù)f(x)進行求導(dǎo),求出導(dǎo)函數(shù)的最小值即為所求切線方程的斜率,再求出切點再由點斜式得到切線方程.
(2)根據(jù)導(dǎo)函數(shù)的正反判斷函數(shù)的單調(diào)性,然后對a的不同范圍求函數(shù)f(x)在x∈[a,3a]上的最小值使得大于等于0,進而可確定a的范圍.
解答:解:(Ⅰ)設(shè)切線斜率為k則k=f'(x)=x2-2x-3,當x=1時k最小值為-4.
f(1)=-
20
3
所以切線方程為y+
20
3
=-4(x-1)即12x+3y+8=0
(Ⅱ)由k=f'(x)=x2-2x-3>0,k=f'(x)=x2-2x-3<0<0得.
函數(shù)f(x)=
x3
3
-x2-3x-3a
,(a>0)在(-∞,-1),(3,+∞)為增函數(shù),在(-1,3)減函數(shù)
(1)
0<a<3a≤3
f(3a)≥0
,無解;
(2)
0<a<3<3a
f(3)≥0
無解;
(3)
a≥3
f(a)≥0
,解得a≥6.綜上所述a≥6.
點評:本題主要考查導(dǎo)數(shù)的幾何意義、函數(shù)單調(diào)性與其導(dǎo)函數(shù)的正負之間的關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-
92
x2+6x-a
,
(1)對于任意實數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
12
)x-2
,則其零點所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
1
2
)x-2
,則其零點所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-tx+
t-1
2
,t∈R

(I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性:
(II)求最小的實數(shù)h,使得對任意x∈[0,1]及任意實數(shù)t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
3
 
-3a
x
2
 
+3bx
的圖象與直線12x+y-1=0相切于點(1,-11).
(I)求a,b的值;
(II)如果函數(shù)g(x)=f(x)+c有三個不同零點,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案